Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/233390
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorStarodubtsev, I. E.
dc.contributor.authorKharin, Yu. S.
dc.contributor.authorStarodubtseva, M. N.
dc.date.accessioned2019-10-29T12:06:19Z-
dc.date.available2019-10-29T12:06:19Z-
dc.date.issued2019
dc.identifier.citationComputer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 298-301.
dc.identifier.isbn978-985-566-811-5
dc.identifier.urihttp://elib.bsu.by/handle/123456789/233390-
dc.description.abstractThe method of statistical classification of biological cells, treated with carbon nanotubes, based on images of cell surface obtained with an atomic force microscope (AFM) is proposed. Each scan line of the original AFM image is considered as a random sequence realization, and the discrete Fourier transform is applied to compute its spectral features. After smoothing, the map of spectral estimates is formed. The informative features are computed as the medians for the set of the spectrogram values. Classification of four classes of cells (control and treated with carbon nanotubes, after 1 hour and 24 hours of incubation) was carried out by the obtained informative features using the decision trees method. The proposed method provides a sufficiently high accuracy classification of cell states after the treatment with carbon nanotubes
dc.language.isoen
dc.publisherMinsk : BSU
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.titleStatistical classification of the states of biological cells treated with carbon nanotubes based on AFM-images of cell surface
dc.typeconference paper
Располагается в коллекциях:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Полный текст документа:
Файл Описание РазмерФормат 
298-301.pdf469,59 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.