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Abstract

The method of statistical classi�cation of biological cells, treated with car-
bon nanotubes, based on images of cell surface obtained with an atomic force
microscope (AFM) is proposed. Each scan line of the original AFM image is
considered as a random sequence realization, and the discrete Fourier transform
is applied to compute its spectral features. After smoothing, the map of spectral
estimates is formed. The informative features are computed as the medians for
the set of the spectrogram values. Classi�cation of four classes of cells (control
and treated with carbon nanotubes, after 1 hour and 24 hours of incubation) was
carried out by the obtained informative features using the decision trees method.
The proposed method provides a su�ciently high accuracy classi�cation of cell
states after the treatment with carbon nanotubes.
Keywords: data science, AFM-image, carbon nanotube, cell surface, classi�ca-
tion

1 Introduction

Atomic force microscopy (AFM) is a modern method of biomedical research which al-
lows studying the relief and the physicomechanical properties of biological cell surfaces
at nanoscale level, it makes possible the determination of their type and condition
based on complex statistical data [1,2,3].

The aim of this paper it to solve the problem of the statistical classi�cation of
AFM-images (the microscale maps of cell surface mechanical properties) of biological
cells (glial cells) treated with carbon nanotubes.

The samples of rat glioma cell (C6 cell line) treated with the DNA-single-walled
carbon nanotube (NT) complex (incubation time was 1 and 24 hours) were kindly pro-
vided by the Biophysics Department of Physics Faculty of Belarusian State University.
The structure and distribution of mechanical properties over the cell surface change in
time dependent on treatment of cells with NT. Images of cell surfaces were recorded
using AFM NT-206 in Research Laboratory of the Gomel State Medical University. For
the analysis, the maps of lateral forces of the cell surface of size of 2.5 µm × 2.5 µm
(256 × 256 points) were used. AFM-images were processed by the software developed
by us using the �tw library [4].
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2 Mathematical model

The AFM-image of cell surface is a two-dimensional array z=z(x,y), where x is the
vertical coordinate, y is the horizontal coordinate, x,y ∈ {1,2,...,N}; z is the value of
the sliding friction force at the point (x, y). An AFM-image of size of N × N points
can be considered as a set of N one-dimensional arrays z = z(y)(x) of N points each,
located at a distance of a scanning step along the y axis (N is an even number, in
experiments N=256).

Original AFM-images were normalized by dividing the values z(x,y) by 103. Instead
of the initial values of z at each y were considered z′ is the di�erences between adjacent
values along the x axis, divided by the value of the standard deviation for each line:

z′(x, y) =
z(x+ 1, y)− z(x, y)√

D(y)
, x ∈ {1, 2, ..., N − 1}.

The data obtained in this way corresponds to four classes: Ω1 - NT-1h (with NT,
after 1 hour), Ω2 - control-1h (without NT, after 1 hour), Ω3 - NT-24h (with NT, after
24 hours), Ω4 - control-24h (without NT, after 24 hours).

3 Informative features

Each one-dimensional array z = z(y)(x) with �xed y can be considered as an realization

of a random sequence z = z
(y)
x , x ∈ {1,2,...,N}, for which a discrete Fourier transform

can be applied:

X(y)(ωk) =
N∑
n=1

(z(y)
n − z̄(y))e−j

2πkn
N , k = 0, 1, ..., N − 1,

where z̄
(y)
n = 1

N

∑N
n=1 z

(y)
n is the sample mean on the x axis with �xed y, ωk = 2π k

L
is

frequency, L is the length of analyzed interval along the x axis.
Based on the sample spectrum X(y)(ωk), we calculated the periodogram

r(y)(ωk) = |X(y)(ωk)|2,
and, smoothing it using the Daniel window with a width of m (m=5), we obtained
spectral density estimates R(y)(ωk) [5]. Estimates R(y)(ωk) at k=N

2
+1,...,N-1 were

excluded from our consideration as they repeated the values at k=0,...,N
2
-2.

For each frequency ωk we calculated the medians of the spectral density using N
values along the y axis:

R̃(ωk) = Med{R(1)(ωk), ..., R
(N)(ωk)}, k = 0, ...,

N

2
− 1,

that were used as informative features of the original AFM image. We will call R̃(ωk) :
k = 0, ..., N

2
−1 as the spectrogram of AFM image of cell surface under this study. Values

R̃(ωk) : k = 71, ..., 128 were excluded from our consideration because the corresponding
periods Tk = 2π

ωk
were smaller than the scanning step.
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4 Statistical classi�cation

We used the decision trees algorithm for classi�cation, to build decision trees we used
the C&RT algorithm [6]. The choice of features for constructing a decision tree was
carried out using the Gini criterion [6]. Since the training sample is not large enough,
the choice of the optimal size of the classi�cation tree was determined using cross-
validation [7]. The examination sample size was 30% of the entire sample size.

5 Numerical results

The training sample size was consist of 51 observations (the AFM images of 256 × 256
dots). Examples of averaged spectrograms for pairs of classes {Ω1, Ω2} and {Ω3, Ω4}
are shown in Figure 1.

Table 1 presents the values of the accuracy of correct classi�cation.

6 Conclusion

The proposed statistical classi�cation method based on spectral features of the AFM
images presenting the maps of mechanical properties of rat glioma cells provides a
su�ciently high classi�cation accuracy of cell states after the treatment with carbon
nanotubes. The results can be used in the study of the e�ects of carbon nanotubes on
biological cells.
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