Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/233379
Title: Overview of speech synthesis using LSTM neural networks
Authors: Navickas, G.
Korvel, G.
Bernataviciene, J.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 2019
Publisher: Minsk : BSU
Citation: Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 257-261.
Abstract: Currently, the most popular speech recognition systems are based on unit selection - decision tree algorithms. In literature, new speech synthesis methods based on Recurrent Neural Networks (RNN) and Long Short Term Memory (LSTM) are proposed. In this paper, an overview of speech synthesis and their realization called LSTM is given. Directions for further investigations are high-lighted
URI: http://elib.bsu.by/handle/123456789/233379
ISBN: 978-985-566-811-5
Appears in Collections:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Files in This Item:
File Description SizeFormat 
257-261.pdf371,56 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.