Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/233358
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKaraliute, M.
dc.contributor.authorDucinskas, K.
dc.contributor.authorSaltyte-Vaisiauske, L.
dc.date.accessioned2019-10-29T12:06:16Z-
dc.date.available2019-10-29T12:06:16Z-
dc.date.issued2019
dc.identifier.citationComputer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 172-175.
dc.identifier.isbn978-985-566-811-5
dc.identifier.urihttp://elib.bsu.by/handle/123456789/233358-
dc.description.abstractThe problems of discriminant analysis of spatial-temporal correlated Gaussian data were intensively considered previously (see e.g. Saltyte-Benth and Ducinskas (2005)). However, theoretical results were derived under the assumption of statistical independence between observation to be classified and training sample. In the present paper, we avoid this tough restriction. The problem of supervised classifying of the spatial Gaussian time series (SGTS) observation into one of two populations, is specified by different regression mean models and by common covariance function, is considered. In the case of complete parametric certainty and with the fixed training sample locations, the formula of conditional Bayes error rate is derived. In the case of unknown regression parameters and temporal covariance matrix, their ML estimators are plugged into the Bayes discriminant function. The asymptotic approximation of expected error rate is derived. This result is multivariate generalization of previous ones
dc.language.isoen
dc.publisherMinsk : BSU
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.titleExpected error rate in linear discrimination of balanced spatial Gaussian time series
dc.typeconference paper
Располагается в коллекциях:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Полный текст документа:
Файл Описание РазмерФормат 
172-175.pdf305,77 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.