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Abstract

The problems of discriminant analysis of spatial-temporal correlated Gaussian
data were intensively considered previously (see e.g. Saltyte-Benth and Ducin-
skas (2005)). However, theoretical results were derived under the assumption of
statistical independence between observation to be classified and training sample.
In the present paper, we avoid this tough restriction. The problem of supervised
classifying of the spatial Gaussian time series (SGTS) observation into one of two
populations, is specified by different regression mean models and by common co-
variance function, is considered. In the case of complete parametric certainty
and with the fixed training sample locations, the formula of conditional Bayes
error rate is derived. In the case of unknown regression parameters and temporal
covariance matrix, their ML estimators are plugged into the Bayes discriminant
function. The asymptotic approximation of expected error rate is derived. This
result is multivariate generalization of previous ones.
Keywords: Gaussian random field, Bayes discriminant function, spatial corre-
lation, conditional Bayes error rate, actual and expected error rate

1 Introduction

It is known that for completely specified populations an optimal classification rule
in the sense of minimum misclassification probability is the Bayesian classification
rule (BCR). In practice, however, some or all statistical parameters of populations
are unknown. Training sample is used for the estimation of the parameters of both
populations. Then the estimators of unknown parameters based on training sample are
usually plugged in BCR. The expected error rate are usually considered as performance
measure for the plug-in classification rule. To obtain closed-form expressions for the
expected error rate are very cumbersome even for the simplest parametric structures of
populations. This makes it difficult to build some qualitative conclusions. Therefore,
asymptotic expansions of the expected error rate associated with plug-in BCR are
especially important.

Many authors have investigated the performance of the plug-in version of the BCR
when parameters are estimated from training samples with independent observations,
or training samples where observations are temporally dependent (McLachlan(2004)).
However, they did not analyze the error rate in classification of spatial-temporal data.
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The main objective of this paper is to classify T observations of spatio-temporal
GRF {Z(s, t) : s ∈ D ⊂ R2, t ∈ [0,∞)} where s and t define spatial and temporal
coordinates, respectively.

The model of observation Z(s, t) in population Ωl is

Z(s, t) = µl(s, t) + ε(s, t),

where µl(s, t) - deterministic spatio-temporal trend, l - class number.
We modeled large-scale variation as the linear parametric trend
µl(s, t) = β′lx(s)
where x(s) = (x1(s), ..., xq(s))

′ is vector of a spatial covariates and βl(t) is a q vector
of parameters. The error term is generated by univariate zero - mean stationary GRF
{ε(s, t) : s ∈ D ⊂ R2, t ∈ [0,∞)}, with covariance function defined by model for all
s, u ∈ D

cov{ε(s, t), ε(u, r)} = C(s, u; t, r).

In this paper we restrict our attention to the separable case
C(s, u; t, r) = R(s, u)Σ(t, r),
where R(s, u) denotes spatial correlation between observations in locations s and u

and Σ(t, r) denotes temporal covariance between observations at moments t and r.
We consider isotropic spatial correlation belonging to Mattern family (e.g. ex-

ponential model). Temporal dependence is described by the AR(p) models.
Let Sn = {si ∈ D; i = 1, ..., n} be a set of locations where training observation is

taken. Call it the set of training locations (STL). So Sn is partitioned into the union
of two disjoint subsets, i.e. Sn = S(1) ∪ S(2), where S(l) is the subset of Sn where
observations of Z(·) from Ωl are taken l = 1, 2. Let (S(l)) = nl, l = 1, 2, n = n1 + n2.
The partition of STL denoted by ξ = {S(1), S(2)} will be called the spatial labels design
(SLD) of training sample T .

Joint training sample M is stratified training sample, specified by n × T ma-
trix M =

(
M1

M2

)
, where Ml is the nl × T matrix of nl observations of vectors

Zi = (Z(si, 1), ..., Z(si, T ))′ from Πl = ΩT
l , where ΩT

l denotes the T -fold direct product
of from Ωl, l = 1, 2. Then for l = 1, 2 Zi ∼ NT (B′lxi,Σ), where xi = x(si), i = 0, ..., n
and Bl = (βl(1), ..., βl(T )).

Let B =
(
B1

B2

)
and X1 = (x1, ..., xn1)′, X2 = (xn1+1, ..., xn)′ and X = X1 ⊕X2.

Consider the problem of classification of the vector of T observations of Z at location
s0 denoted by Z0 = (Z(s0, 1), ..., Z(s0, T ))′ into one of two populations specified above
with the given joint training sample M .

Then the model of M is
M = XB + E, (1)

E is the n×T matrix of random errors that has matrix-variate normal distribution i.e.

E ∼ Nn×p(0, R⊗ Σ).

Here R = (rij; i, j,= 1, ..., n) denotes the spatial correlation matrix among observations
in STL.
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Denote by r0 the vector of spatial correlations between Z0 and observations in STL
i.e r0 = (r01, ..., r0n). Set

α0 = R−1r0, ρ = 1− r′0α0.

Notice that in population Ωl, the conditional distribution of Z0 given M = m is Gaus-
sian, i.e.

(Z0|M = m,Ωl) ∼ NT (µ0
lm,Σ0m). (2)

Then conditional squared Mahalanobis distance between populations for observa-
tion taken at location s = s0 is

∆2
0 = (µ0

1m − µ0
2m)′Σ−1

0m(µ0
1m − µ0

2m) = ∆2/ρ.

Let H = (Iq, Iq) and G = (Iq,−Iq), where Iq denotes the identity matrix of order q.
Under the assumption that the populations are completely specified and for known

prior probabilities of populations π1(s) and π2(s) (π1(s)+π2(s) = 1), the Bayes discrim-
inant function (BDF) minimizing the probability of misclassification (PMC) is formed
by log-ratio of conditional likelihood of distribution specified in (1)-(2), that is

Wm(Z0) =
(
Z0 −

(
m−XB)′α0 −B′H ′x0/2

)′
Σ−1B′G′x0/ρ+ γ (3)

where γ = ln(π1(s0)/π2(s0)).
In this paper prior probabilities at location s0 is assumed to be

π1(s0) =

n1∑
i=1

1

d(s0, si)

/ n∑
i=1

1

d(s0, si)
, π2(s0) = 1− π1(s0),

where d(·, ·) denotes the Euclidean distance function between locations.
This discriminant function is optimal under the criterion of minimum of misclassi-

fication probability (see McLachlan, 2004).
The probability of misclassification for WT (Z0) be called the Bayes error rate or

optimal error rate. Denote it by Pn.

Lemma 1. Bayes error rate for Wm(Z0) specified in (3) is

Pn =
2∑
l=1

πlΦ(Ql), (4)

where Ql = −∆0/2 + (−1)lγ/∆0.

2 The error rates for plug-in BDF

When estimators of unknown parameters are plugged into BDF, the plug-in BDF is
obtained. In this paper we assume that true values of parameters B and Σ are unknown.
Let B̂ and Σ̂ be the estimators of B and Σ based on M .
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The set of parameters that are to be estimated and the set of their estimators are
denoted by Ψ = {B,Σ} and Ψ̂ = {B̂, Σ̂}, respectively.

Then replacing Ψ by Ψ̂ in (4) we get the plug-in BDF (PBDF)

WM(Z0; Ψ̂) =
(
Z0 −

(
M −XB̂)′α0 − B̂′H ′x0/2

)′
Σ̂−1B̂′G′x0/ρ+ γ. (5)

Definition 1. The actual error rate for BPDF WM(Z0; Ψ̂) is defined as

P (Ψ̂) =
2∑
l=1

πlP ((−1)lWM(Z0; Ψ̂) > 0|M). (6)

Definition 2. The expectation of the actual error rate with respect to the distribution
of M designated as EM{P (Ψ̂)}, is called the expected error rate (EER).

So the EER for considered problem of Z0 classification by BPDF is specified by
EM{P (Ψ̂)}.

Let Φ(x) be the standard normal distribution function.

Theorem 1. Suppose that observation Z0 to be classified by BPDF specified in (6),
then the asymptotic approximation of EER based on second order Taylor expansion is

AER =
2∑
l=1

πlΦ(−∆0/2 + (−1)lγ/∆0) + π1ϕ(−∆0/2− γ/∆0)×

{Λ′RBΛ∆0/k + (T − 1)x′0GRBG
′x0/(k∆0) + (2γ2/∆0 + (T − 1)∆0)/(n− 2q)}/2. (7)

where Λ = X ′α0 − (H ′/2 + γG′/∆2
0)x0.
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