Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/222090
Заглавие документа: Отбор информативных признаков экзонов генов человека
Другое заглавие: Selecting informative features of human gene exons / A. U. Volkau, M. M. Yatskou, V. V. Grinev
Авторы: Волков, А. В.
Яцков, Н. Н.
Гринев, В. В.
Тема: ЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатика
ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биология
Дата публикации: 2019
Издатель: Минск : БГУ
Библиографическое описание источника: Журнал Белорусского государственного университета. Математика. Информатика = Journal of the Belarusian State University. Mathematics and Informatics . - 2019. - № 1. - С. 77-89
Аннотация: Рассмотрена задача сокращения размерности пространства признаков экзонов человека с целью определить их генную принадлежность. Для оценки эффективности алгоритмов отбора признаков проведены вычислительные эксперименты на примерах экзонов 14 известных генов человека. Установлено, что экзоны четко разделимы относительно генной принадлежности. Алгоритмы автоматического отбора чувствительны к шумовым признакам и позволяют оценить количество таких признаков. Сокращение числа последних улучшает производительность вычислений и потребление памяти, а также позволяет получать значительно более простые прогностические модели и повышает их интерпретируемость. Показано, что тренировка алгоритмов индуктивного обучения на признаках фланкирующих интронов обеспечивает более высокую предсказательную способность в сравнении с обучением алгоритмов на признаках экзонов. Результаты представленной работы открывают новые возможности для изучения организации генов человека с помощью алгоритмов машинного обучения.
Аннотация (на другом языке): Dimensionality reduction of the human gene exon feature space is considered with the aim of gene identification. To evaluate the performance of various feature selection algorithms, computational experiments were carried out using the examples of exons of 14 known human genes. It is proven that exons are clearly separable regarding gene affiliation. Feature selection algorithms are sensitive to noise features and allow to estimate their number. Reducing the number of features improves CPU-time, memory usage as well as reduces the complexity of a model and makes it easier to interpret. Our findings indicate that utilizing of features of flanking intronic sequences leads to better prediction models in comparison with utilizing of exon features. The results of the research provide new opportunities for study of human gene data using machine learning algorithms.
URI документа: http://elib.bsu.by/handle/123456789/222090
ISSN: 1561-834X
DOI документа: https://doi.org/10.33581/2520-6508-2019-1-77-89
Лицензия: info:eu-repo/semantics/openAccess
Располагается в коллекциях:2019, №1

Полный текст документа:
Файл Описание РазмерФормат 
77-89.pdf1,76 MBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.