Please use this identifier to cite or link to this item:
https://elib.bsu.by/handle/123456789/211082Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Ле Ван Линь | - |
| dc.date.accessioned | 2018-12-17T07:01:18Z | - |
| dc.date.available | 2018-12-17T07:01:18Z | - |
| dc.date.issued | 2003 | - |
| dc.identifier.citation | Вестник Белорусского государственного университета. Сер. 1, Физика. Математика. Информатика. – 2003. - № 2. – С. 90-95. | ru |
| dc.identifier.issn | 0321-0367 | - |
| dc.identifier.uri | http://elib.bsu.by/handle/123456789/211082 | - |
| dc.description.abstract | The conditions are shown, at which the Origin of the system x =y+Ax2+3Bxy+Cy2, у = -x+Kx3+3Lx2y+Mxy2+Ny3, is a center. The solution is given isochronous problem of this system center. | ru |
| dc.language.iso | ru | ru |
| dc.publisher | Минск : БГУ | ru |
| dc.rights | info:eu-repo/semantics/openAccess | en |
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
| dc.title | Центры кубической системы c однородными нелинейностями | ru |
| dc.type | article | ru |
| Appears in Collections: | 2003, №2 (май) | |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

