Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/210829
Title: Устойчивость относительно регулярных операторов в банаховом пространстве и связанных с ними существенных спектров : отчет о научно-исследовательской работе (заключительный) / БГУ ; научный руководитель В. А. Еровенко
Authors: Еровенко, В. А.
Яблонская, Н. Б.
Мартон, М. В.
Гулина, О. В.
Васильев, И. Л.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2015
Publisher: Минск : БГУ
Abstract: Объектом исследования являются ограниченные операторы банаховых пространствах и их различные спектральные характеристики. Цель работы - нахождение условий, при которых операторы с замкнутой областью значений сохраняют свойство нормальной разрешимости при различных возмущениях. В результате работы: 1) Доказаны общие теоремы об устойчивости существенно регулярных операторов с замкнутой областью значений, действующих в банаховом пространстве, при возмущении малыми по норме операторами. 2) Изучено влияние особенностей коэффициентов краевой задачи на поведение ее общего решения, а также получены новые условия устойчивости существенно регулярных операторов в банаховом пространстве при квазинильпотентных возмущениях. 3) Доказана устойчивость различных классов операторов с замкнутой областью значений и установлено, что при определенных ограничениях теоремы об устойчивости сохраняются при замене условия компактности возмущения условием его строгой сингулярности. 4) Даны явные решения в модуле пространства последовательностей, суммируемых по модулю в р-й степени, специального класса матричных разностных уравнений с переменными коэффициентами, как в коммутативном, так и в некоммутативном случае. 5) Выявлены условия инвариантности существенных спектров при различных коммутирующих возмущениях относительно регулярных операторов с замкнутой областью значений, действующих в банаховом пространстве и занимающих различное промежуточное положение между классами нормально разрешимых, полуфредгольмовых и фредгольмовых операторов. Результаты работы могут быть использованы при решении различных задач об устойчивости конкретных классов операторов, действующих в банаховом пространстве, и при вычислении явных формул для различных существенных спектров. Некоторые из полученных результатов могут быть использованы в учебном процессе.
URI: http://elib.bsu.by/handle/123456789/210829
Registration number: № госрегистрации 20113521
Appears in Collections:Отчеты 2015

Files in This Item:
File Description SizeFormat 
отчет Еровенко 20113521.doc715,5 kBMicrosoft WordView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.