Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/210003
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSakovich, S. Yu.-
dc.date.accessioned2018-12-05T07:10:22Z-
dc.date.available2018-12-05T07:10:22Z-
dc.date.issued2017-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2017. - Vol. 20, N 3. - P. 267 - 271ru
dc.identifier.issn1561-4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/210003-
dc.description.abstractWe study the integrability of the four-dimensional eighth-order nonlinear wave equation of Kac and Wakimoto, associated with the exceptional affine Lie algebra e (1) 6 . Using the Painlev´e analysis for partial differential equations, we show that this equation must be non-integrable in the Lax sense but very likely it possesses a lower-order integrable reduction.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleIntegrability Study of a Four-dimensional Eighth-order Nonlinear Wave Equationru
dc.typearticleen
Appears in Collections:2017. Volume 20. Number 3

Files in This Item:
File Description SizeFormat 
v20no3p267.pdf344,82 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.