Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/170480
Заглавие документа: | Hydrogen Atom in de Sitter Spaces |
Авторы: | Veko, O. V. Dashuk, K. V. Ovsiyuk, E. M. Red’kov, V. M. Ishkhanyan, A. M. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Дата публикации: | 2016 |
Издатель: | Minsk : Education and Upbringing |
Библиографическое описание источника: | Nonlinear Phenomena in Complex Systems. - 2016. - Vol. 19, N 1. - P. 16-29 |
Аннотация: | The hydrogen atom theory is developed for the de Sitter and anti de Sitter spaces of constant negative curvature on the basis of the Klein-Gordon-Fock wave equation in static coordinates. In both models, after separation of variables, the problem is reduced to the general Heun equation, a second order linear differential equation having four regular singular points. Qualitative examination shows that the energy spectrum for the hydrogen atom in the de Sitter space should be quasi-stationary, and the atom should be unstable. We derive an approximate expression for energy levels within the quasi-classical approach and estimate the probability of decay of the atom. A similar analysis shows that in the anti de Sitter model the hydrogen atom should be stable in the quantum-mechanical sense. Using the quasi-classical approach, we derive approximate formulas for the energy levels for this case as well. Finally, we present the extension to the case of a spin 1/2 particle for both de Sitter models. This extension leads to complicated differential equations with 8 singular points. |
URI документа: | http://elib.bsu.by/handle/123456789/170480 |
ISSN: | 1561 - 4085 |
Лицензия: | info:eu-repo/semantics/restrictedAccess |
Располагается в коллекциях: | 2016. Volume 19. Number 1 |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.