Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/170480
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVeko, O. V.-
dc.contributor.authorDashuk, K. V.-
dc.contributor.authorOvsiyuk, E. M.-
dc.contributor.authorRed’kov, V. M.-
dc.contributor.authorIshkhanyan, A. M.-
dc.date.accessioned2017-04-10T06:35:36Z-
dc.date.available2017-04-10T06:35:36Z-
dc.date.issued2016-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2016. - Vol. 19, N 1. - P. 16-29ru
dc.identifier.issn1561 - 4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/170480-
dc.description.abstractThe hydrogen atom theory is developed for the de Sitter and anti de Sitter spaces of constant negative curvature on the basis of the Klein-Gordon-Fock wave equation in static coordinates. In both models, after separation of variables, the problem is reduced to the general Heun equation, a second order linear differential equation having four regular singular points. Qualitative examination shows that the energy spectrum for the hydrogen atom in the de Sitter space should be quasi-stationary, and the atom should be unstable. We derive an approximate expression for energy levels within the quasi-classical approach and estimate the probability of decay of the atom. A similar analysis shows that in the anti de Sitter model the hydrogen atom should be stable in the quantum-mechanical sense. Using the quasi-classical approach, we derive approximate formulas for the energy levels for this case as well. Finally, we present the extension to the case of a spin 1/2 particle for both de Sitter models. This extension leads to complicated differential equations with 8 singular points.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleHydrogen Atom in de Sitter Spacesru
dc.typearticleen
Располагается в коллекциях:2016. Volume 19. Number 1

Полный текст документа:
Файл Описание РазмерФормат 
16-29.pdf155,91 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.