Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/10730
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Lomovtsev, F. E. | - |
dc.date.accessioned | 2012-06-01T10:25:37Z | - |
dc.date.available | 2012-06-01T10:25:37Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | Differential Equations, Vol. 41, No. 2, 2005, pp. 272–283. Translated from Differentsial’nye Uravneniya, Vol. 41, No. 2, 2005, pp. 258–267. | ru |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/10730 | - |
dc.description.abstract | Complete quasi-hyperbolic operator-differential equations of even order with constant domains were considered in [1, 2]. Quasi-hyperbolic operator-differential equations of even order with variable domains in the case of a two-term leading part were analyzed in [3]. Complete hyperbolic operator-differential equations of the second order with variable domains were investigated in [4, 5]. In the present paper, we generalize and improve the results of all above-mentioned papers and consider complete quasi-hyperbolic operator-differential equations of even order with variable domains. In applications, such equations include hyperbolic equations such that the coefficients in the equations and in the boundary conditions [3] smoothly depend on time, singular hyperbolic equations [4], and “hyperbolic” equations of higher-order in the space variables, represented in the second part of the present paper. | ru |
dc.language.iso | en | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
dc.title | Boundary Value Problems for Complete Quasi-Hyperbolic Differential Equations with Variable Domains of Smooth Operator Coefficients: I | ru |
dc.type | article | ru |
Располагается в коллекциях: | Архив статей механико-математического факультета до 2016 г. |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
DU272(Lomovcev.I.2005.v.41.N2).pdf | 374,16 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.