
Differential Equations, Vol. 41, No. 2, 2005, pp. 272–283. Translated from Differentsial’nye Uravneniya, Vol. 41, No. 2, 2005, pp. 258–267.
Original Russian Text Copyright c© 2005 by Lomovtsev.

PARTIAL
DIFFERENTIAL EQUATIONS

Boundary Value Problems for Complete
Quasi-Hyperbolic Differential Equations with Variable

Domains of Smooth Operator Coefficients: I

F. E. Lomovtsev
Belarus State University, Minsk, Belarus

Received March 19, 2004

Complete quasi-hyperbolic operator-differential equations of even order with constant domains
were considered in [1, 2]. Quasi-hyperbolic operator-differential equations of even order with vari-
able domains in the case of a two-term leading part were analyzed in [3]. Complete hyperbolic
operator-differential equations of the second order with variable domains were investigated in [4, 5].
In the present paper, we generalize and improve the results of all above-mentioned papers and con-
sider complete quasi-hyperbolic operator-differential equations of even order with variable domains.
In applications, such equations include hyperbolic equations such that the coefficients in the equa-
tions and in the boundary conditions [3] smoothly depend on time, singular hyperbolic equations [4],
and “hyperbolic” equations of higher-order in the space variables, represented in the second part
of the present paper.

1. STATEMENT OF THE PROBLEMS

In a Hilbert space H with inner product (· , ·) and norm |·|, we consider boundary value problems

Lm (λm) u ≡ (−1)m−1 d2mu

dt2m
+

m−1∑

k=0

dk

dtk
A2k+1(t)

dk+1u

dtk+1
+

m−1∑

k=1

dk

dtk
A2k(t)

dku

dtk
+ λmA0(t)u = f, (1)

diu/dti
∣∣
t=0

= dju/dtj
∣∣
t=T

= 0, 0 ≤ i ≤ m, 0 ≤ j ≤ m − 2, m = 1, 2, . . . , (2)

on a bounded interval ]0, T [ , where u and f are functions of the variable t ranging in H and λm ≥ 1
is a numerical parameter. The linear unbounded closed operators As(t) in H with t-dependent
domains D (As(t)), s = 0, . . . , 2m − 1, are subjected to the following conditions.

I. For all t ∈ [0, T ], the operators A0(t) are self-adjoint in H and satisfy the inequality

(A0(t)u, u) ≥ c0(t)|u|2

for all u ∈ D (A0(t)), c0(t) > 0, and their inverses are A−1
0 (t) ∈ B ([0, T ], L (H)) (where

B ([0, T ], L (H)) is the set of linear operators in L (H), which are bounded with respect to t ∈ [0, T ]
and in the norm) and have the strong t-derivative [6, p. 22] dA−1

0 (t)/dt ∈ B ([0, T ], L (H)) in H
satisfying the inequality

−
((

dA−1
0 (t)/dt

)
g, g

)
≤ c

(1)
0

(
A−1

0 (t)g, g
)

∀g ∈ H. (3)

To state constraints for As(t), s > 0, we introduce appropriate spaces. By [6], for A0(t) with
each t ∈ [0, T ], we introduce the fractional powers Aγ

0(t), |γ| ≤ 1, with domains D (Aγ
0(t)). If we

equip D
(
A

α/(2m)
0 (t)

)
with the Hermitian norms |υ|α,t = |Aα/(2m)

0 (t)υ|, then we obtain Hilbert spaces
W α(t), |α| ≤ 2m, W 0(t) = H.

II. For each t ∈ [0, T ], the operators dA−1
0 (t)/dt have the strong derivatives

djA−1
0 (t)/dtj ∈ B ([0, T ], L (H)), 2 ≤ j ≤ m + 1,
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with respect to t in H, which satisfy the inequalities
∣∣((djA−1

0 (t)/dtj
)
g, υ

)∣∣ ≤ c(j)
0 |g|−(m+1−j),t|υ|−m,t ∀g, υ ∈ H. (4)

III. For each t ∈ [0, T ], the operators As(t) ∈ B ([0, T ], L (W 2m−s(t),H)), s > 0, satisfy the
inequalities

|(As(t)u, υ)| ≤ cs|u|m−[(s+1)/2],t|υ|m−[s/2],t ∀u, υ ∈ D (A0(t)) , (5)

where [·] is the integer part of a number, and have the strong t-derivatives [7]

diAs(t)/dti ∈ B
(
[0, T ], L

(
W 2m−s+τ(t),H

))
, τ > 0, 1 ≤ i ≤ [s/2], s > 0.

For each t ∈ [0, T ], the operators A2k(t), k = 1, . . . ,m − 1, are symmetric on D (A0(t)) in H, and
the As(t), s > 0, satisfy the inequalities

(−1)[(s+1)/2] Re
((

diAs(t)/dti
)
u, u

)
≤ c(i)

s |u|2m−[(s+1)/2],t ∀u ∈ D (A0(t)) , (6)

where i = 1 for s = 2k, k = 1, . . . ,m − 1 and i = 0 for s = 2k + 1, k = 0, . . . ,m − 1.
We use the following notion of strong derivative of variable unbounded operators A(t) [with

variable domains D(A(t)) in H] with respect to the parameter t [7].

Definition 1. The operators A(t) are said to be strongly differentiable with respect to t at
t0 ∈ [0, T ] on u (t0) ∈ D (A (t0)) if there exist u(t) ∈ D(A(t)) and t �= t0 such that there exist
derivatives

u′ (t0) = lim
∆t→0

{(u (t0 + ∆t) − u (t0))/∆t} ∈ D (A (t0)) ,

h′ (t0) = lim
∆t→0

{(A (t0 + ∆t)u (t0 + ∆t) − A (t0)u (t0))/∆t} ∈ H

in the strong sense in H and the limits u′ (t0) and h′ (t0) are independent of the choice of u(t).
The value of the strong derivative A′ (t0) of the operators A(t) on u (t0) at t0 is defined as

A′ (t0)u (t0) = h′ (t0) − A (t0)u′ (t0) .

The set of all such u (t0) forms the domain D (A′ (t0)) ⊂ D (A (t0)) of the derivative operator A′ (t0).
The operators A(t) are said to be strongly differentiable with respect to t in [0, T ] on D (A′(t)) if
they are strongly differentiable with respect to t at each t0 ∈ [0, T ] and on each u (t0) ∈ D (A′ (t0)).

IV. For each t ∈ [0, T ], all operators As(t), s > 0, satisfy the inequality
∣∣(As(t)A−1

0 (t)g, υ
)∣∣ ≤ c̃(0)

s |g|−[(s+1)/2],t|υ|−[s/2],t ∀g, υ ∈ H, (7)

the inclusion As(t)
(
djA−1

0 (t)/dtj
)
∈ B ([0, T ], L (H)), 1 ≤ j ≤ [(s + 1)/2], the inequalities

∣∣(As(t)
(
djA−1

0 (t)/dtj
)
g, υ

)∣∣ ≤ c̃(j)
s |g|−[(s+1)/2]+j,t|υ|−[s/2]−1,t

∀g, υ ∈ H, 2 ≤ j ≤ [(s + 1)/2],
(8)

and either inequality (8) with j = 1 or the inequality
∣∣(As(t)

(
dA−1

0 (t)/dt
)
g, υ

)∣∣ ≤ c̃(1)
s |g|−[(s−1)/2],t|υ|−[s/2],t ∀g, υ ∈ H, (9)

inequality (8) with j = 2 and with c̃(j)
s |g|−[(s+1)/2]+1,t|υ|−[s/2],t on the right-hand side, the inclusion

(dAs(t)/dt)
(
dA−1

0 (t)/dt
)
∈ B ([0, T ], L (H)),

the inequality
∣∣((dAs(t)/dt)

(
dA−1

0 (t)/dt
)
g, υ

)∣∣ ≤ c̄(1)
s |g|−[(s−1)/2],t|υ|−[s/2],t ∀g, υ ∈ H, (10)
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and the inequality

(−1)k Re
(
A2k(t)

(
dA−1

0 (t)/dt
)
g, g

)
≤ c̄

(0)
2k |g|2−k,t ∀g ∈ H (11)

for s = 2k > 0; and if s = 2k + 1 > 0, then the operators A2k+1(t)
(
dA−1

0 (t)/dt
)

are symmetric
on D (A2k+1(t)) in H. For each t ∈ [0, T ], the operators A2k(t), k = 1, . . . ,m − 1, satisfy the
inequalities

(−1)k Re [(A2k(t)u,A0(t)υ) − (A0(t)u,A2k(t)υ)]
≤ c̃2k|u|2m−k−1,t|υ|2m−k,t ∀u, υ ∈ D (A0(t))

(12)

and the operators A2k+1(t), k = 0, . . . ,m − 1, satisfy the inequalities

(−1)k+1 Re (A2k+1(t)u,A0(t)u) ≤ c̃2k+1|u|22m−k−1,t ∀u ∈ D (A0(t)) . (13)

In inequalities (3)–(13), all constants c(j)
0 , cs, c(i)

s , c̃(j)
s , c̄(i)

s , c̃s ≥ 0 are independent of g, u, υ,
and t.

In the present paper, we prove the well-posed solvability of boundary value problems (1), (2)
in the strong sense for λm ≥ λ̃m in the case of higher-order complete equations. The proof is
performed by the modification and generalization of the well-known method of energy inequalities
in [8], unlike which we first derive a priori estimates for strong solutions of problems (1), (2) with
the use of smoothing operators A−1

ε (t) and then, by using Lemma 8 in [9], show that the range of the
operators of problems (1), (2) is dense in the space of right-hand sides. Equations (1) contain only
leading terms, and the well-posedness of boundary value problems for equations with additional
lower terms is to be discussed in Remark 2.

2. INTERPOLATION INEQUALITIES

Throughout the sequel, we need the following auxiliary assertions. The following assertion deals
with the continuity of the derivative dA−1(t)/dt in the corresponding pair of Hilbert scales of spaces
{W q(t)}, |q| ≤ 2m.

Lemma 1. Let A(t) be linear self-adjoint positive operators in the Hilbert space H with
t-dependent domains D(A(t)). If their inverses A−1(t) ∈ B ([0, T ], L (H)) have the strong deriva-
tive

dA−1(t)/dt ∈ B
(
[0, T ], L

(
H,W 2m(1−β)(t)

))
∩ B

(
[0, T ], L

(
W−2m(t),W−2mβ(t)

))
,

0 ≤ β ≤ 1, in H for all t, then
∣∣A1−β−α(t)

(
dA−1(t)/dt

)
Aα(t)x

∣∣ ≤ M |x| ∀x ∈ D (Aα(t)) , 0 ≤ α ≤ 1, (14)

where

M = ess sup
0<t<T

{∥∥A1−β(t)
(
dA−1(t)/dt

)∥∥
L (H)

,
∥∥∥ A−β(t) (dA−1(t)/dt) A(t)

∥∥∥
L (H)

}
,

and the bar stands for the closure of operators by continuity in H.

Proof. The operators A = B = Aβ−1(t) and T = A1−β(t) (dA−1(t)/dt) satisfy Remark 7.1
in [6, pp. 177–179] in H1 = H for all t; in particular, |BT x| ≤ M |A x| for all x ∈ H. By applying
the Heinz inequality (7.6) in [6, p. 178] to them, we obtain the estimate (14) for all t and all
0 ≤ α ≤ 1 − β. The operators A = B = Aβ(t) and T = A−β(t) (dA−1(t)/dt) also satisfy the
above-mentioned Remark 7.1; likewise, by applying the Heinz inequality (7.6) from [6, p. 178] to
them, we obtain the estimates (14) for all t and all 1 − β ≤ α ≤ 1. The proof of Lemma 1 is
complete.

The following assertion is a generalization of the Daletskii theorem [6, p. 231] to self-adjoint
operators with variable domains.
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Lemma 2. Under the assumptions of Lemma 1, the operators A−γ(t), β ≤ γ < 1, have the
strong derivative

dA−γ(t)
dt

=
sin πγ

π

+∞∫

0

s−γA(t)R(−s)
dA−1(t)

dt
A(t)R(−s)ds, β ≤ γ < 1,

R(−s) = (A(t) + s)−1,

for each t ∈ [0, T ] in H, and
∣∣Aγ−β(t)

(
dA−γ(t)/dt

)
x
∣∣ ≤ Mγ|x| ∀x ∈ H, β ≤ γ < 1, (15)

∣∣A−β(t)
(
dA−γ(t)/dt

)
Aγ(t)x

∣∣ ≤ Mγ|x| ∀x ∈ D (Aγ(t)) , β ≤ γ < 1. (16)

Proof. The integral representation of the derivative dA−γ(t)/dt is obtained by the differentiation
of the integral representation of negative fractional powers A−γ(t) [6, p. 137] for γ > β by virtue of
the relation

dR(−s)/dt = A(t)R(−s)
(
dA−1(t)/dt

)
A(t)R(−s),

the estimates
∥∥Aβ(t)R(−s)

∥∥
L (H)

≤ Nβ/(1 + s)1−β, s > 0, 0 ≤ β < 1, and the boundedness of the
operators A1−β(t) (dA−1(t)/dt) [and, for γ = β, by virtue of the estimates (15) proved below].

If Q = Aγ(t)R(−s)A1−β(t) (dA−1(t)/dt) A(t)R(−s) and x, y ∈ D(A(t)), then we have

|(Qx, y)| =
∣∣(A1−β−(1−γ)/2(t)

(
dA−1(t)/dt

)
A(1−γ)/2(t)A(1+γ)/2(t)R(−s)x,A(1+γ)/2(t)R(−s)y

)∣∣

≤
∥∥∥ A1−β−(1−γ)/2(t) (dA−1(t)/dt) A(1−γ)/2(t)

∥∥∥
L (H)

∣∣A(1+γ)/2(t)R(−s)x
∣∣

×
∣∣A(1+γ)/2(t)R(−s)y

∣∣

for all t, where the bar stands for the closure of operators by continuity in H. By using inequali-
ties (14) for α ≤ 1−β and the spectral expansion of the operators A(t) and by following [6, p. 230],
we obtain the estimates (15) with constants Mγ = M cγ , where cγ = (1/3)

∫ +∞
0

σ−γ(1 + σ)−2dσ.
If Q = A(t)R(−s)A−β(t) (dA−1(t)/dt) A1+γ(t)R(−s) and x, y ∈ D(A(t)), then

|(Qx, y)| =
∣∣(A−β+(1−γ)/2(t)

(
dA−1(t)/dt

)
A(1+γ)/2(t)A(1+γ)/2(t)R(−s)x,A(1+γ)/2(t)R(−s)y

)∣∣

≤
∥∥∥ A−β+(1−γ)/2(t) (dA−1(t)/dt) A(1+γ)/2(t)

∥∥∥
L (H)

∣∣A(1+γ)/2(t)R(−s)x
∣∣

×
∣∣A(1+γ)/2(t)R(−s)y

∣∣

for all t, where the bar stands for the closure of operators by continuity in H. Here we use
inequality (14) for 0 ≤ α ≤ 1 and the spectral expansion of the operators A(t); following [6, p. 230],
we obtain the estimate (16). The proof of Lemma 2 is complete.

The derivative dA−γ(t)/dt is also continuous in an appropriatepair of Hilbert space scales
{W q(t)}, |q| ≤ 2m.

Lemma 3. Under the assertions of Lemma 1, the estimates
∣∣Aγ−β−α(t)

(
dA−γ(t)/dt

)
Aα(t)x

∣∣ ≤ Mγ|x|
∀x ∈ D (Aα(t)) , β ≤ γ < 1, 0 ≤ α ≤ γ,

(17)

are valid for each t ∈ [0, T ].

Proof. By the estimates (15) and (16), it suffices to apply Lemma 1 to the operators Aγ(t)
instead of the operators A(t). The proof of Lemma 3 is complete.

We need interpolation inequalities in the negative Hilbert space scale {H q}, −m ≤ q ≤ 0,
where H q = L2 (]0, T [,W q(t)), with Hermitian norms ‖ · ‖q. The space H q is the set of all
functions u : [0, T ] 
 t → u(t) ∈ H for which u(t) ∈ D

(
Aq/(2m)(t)

)
, t ∈ [0, T ], and the functions

h(t) = Aq/(2m)(t)u(t) ∈ H 0 = H = L2(]0, T [,H).
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Lemma 4. Under the assumptions of Lemma 1, the inequalities
∥∥∥∥
diw

dti

∥∥∥∥
2

−i

≤ τ

∥∥∥∥
dmw

dtm

∥∥∥∥
2

−m

+ c
(i)
2m(τ)‖w‖2

0, τ > 0, 0 < i < m, (18)

T∫

0

(T − t)
∣∣∣∣
diw

dti

∣∣∣∣
2

−i,t

dt ≤ τ

T∫

0

(T − t)
∣∣∣∣
dmw

dtm

∣∣∣∣
2

−m,t

dt + c̃
(i)
2m(τ)

T∫

0

(T − t)|w|2dt, (19)

τ > 0, 0 < i < m,

are valid for β = 1/(2m) and for all w ∈ W m, W m =
{

w ∈ H : dkw/dtk ∈ H , 1 ≤ k ≤ m;

(diw/dti)|t=0 = (djw/dtj)|t=T = 0, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 2
}

, where c
(i)
2m(τ), c̃(i)

2m(τ) > 0 are
constants independent of w and t.

Proof. The estimates (18) and (19) can be proved by induction over i with the use of integration
by parts, the estimates (17), and the δ-inequality 2ab ≤ δa2 + δ−1b2 for all δ > 0.

In the derivation of a priori estimates for solutions of the boundary value problems (1), (2),
we need interpolation inequalities in the positive Hilbert space scale {H q}, 0 ≤ q ≤ m, induced by
self-adjoint operators with variable domains.

Lemma 5. Under the assumptions of Lemma 1, the inequalities
∥∥∥∥

diu

dti

∥∥∥∥
2

m−i

≤ τ

∥∥∥∥
dmu

dtm

∥∥∥∥
2

0

+ c
(i)
2m+1(τ)‖u‖2

m, τ > 0, 0 < i < m, (20)

T∫

0

(T − t)
∣∣∣∣
diu

dti

∣∣∣∣
2

m−i,t

dt ≤ τ

T∫

0

(T − t)
∣∣∣∣
dmu

dtm

∣∣∣∣
2

dt + c̃
(i)
2m+1(τ)

T∫

0

(T − t)|u|2m,tdt, (21)

τ > 0, 0 < i < m,

are valid for β = 1/(2m) and for all u ∈ Em (the spaces Em are to be defined below, at the beginning
of Section 3), where the c

(i)
2m+1(τ), c̃(i)

2m+1(τ) > 0 are constants independent of u and t.

Proof. The operators Aε(t) = A(t)(I + εA(t))−1 with domains D (Aε(t)) = H are bounded,
self-adjoint, and positive in H for all ε > 0. One can readily show that

∥∥A −β
ε (t) (dAε(t)/dt) A −1

ε (t)
∥∥

L (H)
≤ M ,

∥∥A −1
ε (t) (dAε(t)/dt) A −β

ε (t)
∥∥

L (H)
≤ M

(22)

for all t.
By applying the Heinz inequality (7.6) in [6, p. 178] to the operators A = B = A β−1

ε (t) and
T = A −β

ε (t) (dAε(t)/dt) A −1
ε (t), we obtain

∣∣A −β−α
ε (t) (dAε(t)/dt) A −1+α

ε (t)x
∣∣ ≤ M |x| ∀x ∈ H, 0 ≤ α ≤ 1 − β, (23)

for all t.
By integrating the integral representation of positive fractional powers A γ

ε (t) [6, p. 140], we ob-
tain

dA γ
ε (t)
dt

x =
sinπγ

π

+∞∫

0

sγRε(−s)
dAε(t)

dt
Rε(−s)x ds

∀x ∈ D(A(t)), 0 < γ < 1 − β,
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for all t, where Rε(−s) = (Aε(t) + s)−1. If Q = A −β
ε (t)Rε(−s) (dAε(t)/dt) A −γ

ε (t)Rε(−s) and
x, y ∈ D(A(t)), then

|(Qx, y)| =
∣∣∣
(

A −β−(1−γ)/2
ε (t) (dAε(t)/dt) A −1+(1−γ)/2

ε (t)A (1−γ)/2
ε (t)

× Rε(−s)x, A (1−γ)/2
ε (t)Rε(−s)y

)∣∣∣

≤
∥∥A −β−(1−γ)/2

ε (t) (dAε(t)/dt) A −1+(1−γ)/2
ε (t)

∥∥
L (H)

×
∣∣A (1−γ)/2

ε (t)Rε(−s)x
∣∣∣∣A (1−γ)/2

ε (t)Rε(−s)y
∣∣

for all t. By virtue of (23) and the spectral expansions of the operators Aε(t), we obtain
∣∣A −β

ε (t) (dA γ
ε (t)/dt) A −γ

ε (t)x
∣∣ ≤ M−γ|x| ∀x ∈ H, β ≤ γ ≤ 1 − β, (24)

for all t. If Q = A −γ
ε (t)Rε(−s) (dAε(t)/dt) A −β

ε (t)Rε(−s) and x, y ∈ D(A(t)), then

|(Qx, y)| =
∣∣∣
(

A −1+(1−γ)/2
ε (t) (dAε(t)/dt) A −β−(1−γ)/2

ε (t)A (1−γ)/2
ε (t)

× Rε(−s)x, A (1−γ)/2
ε (t)Rε(−s)y

)∣∣∣

≤
∥∥A −1+(1−γ)/2

ε (t) (dAε(t)/dt) A −β−(1−γ)/2
ε (t)

∥∥
L (H)

×
∣∣A (1−γ)/2

ε (t)Rε(−s)x
∣∣∣∣A (1−γ)/2

ε (t)Rε(−s)y
∣∣

for all t.
By inequalities (23) and the spectral expansions of the operators Aε(t), we have

∣∣A −γ
ε (t) (dA γ

ε (t)/dt) A −β
ε (t)x

∣∣ ≤ M−γ|x| ∀x ∈ H, β ≤ γ ≤ 1 − β, (25)

for all t. By (24) and (25), the operators A γ
ε (t) satisfy inequalities (22) with constants M−γ instead

of Mγ, and inequalities (23) with A γ
ε (t) instead of Aε(t) are valid for all t :

∣∣A −β−α
ε (t) (dA γ

ε (t)/dt) A −γ+α
ε (t)x

∣∣ ≤ M−γ|x|
∀x ∈ H, β ≤ γ ≤ 1 − β, 0 ≤ α ≤ γ − β.

(26)

The operators Aε(t) satisfy half of the assumptions of Lemma 1; i.e.,
∥∥A 1−β

ε (t)
(
dA −1

ε (t)/dt
)∥∥

L (H)
≤ M

for all t. Consequently, by Lemmas 2 and 3,

dA −γ
ε (t)
dt

=
sin πγ

π

+∞∫

0

s−γAε(t)Rε(−s)
dA−1(t)

dt
Aε(t)Rε(−s)ds, β ≤ γ < 1,

and Aε(t) satisfies inequalities (15) and the corresponding part of inequalities (17):
∣∣A γ−β−α

ε (t)
(
dA −γ

ε (t)/dt
)

A α
ε (t)x

∣∣ ≤ Mγ|x|
∀x ∈ H, β ≤ γ < 1, 0 ≤ α ≤ γ − β.

(27)

By using integration by parts, the estimates (26) and (27), the Schwarz inequality, and the
δ-inequality, by induction on i we obtain

∥∥∥∥A (m−i)/(2m)
ε (t)

diu

dti

∥∥∥∥
2

0

≤ τ

∥∥∥∥
dmu

dtm

∥∥∥∥
2

0

+ c
(i)
2m+1(τ)

∥∥A 1/2
ε (t)u

∥∥2

0
, τ > 0, 0 < i < m,
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for all u ∈ D (Lm), where the c
(i)
2m+1(τ) > 0 are constants independent of u, ε, and t. By letting ε

tend to zero and by using the well-known property (29) in [9], we obtain inequalities (17), which
can be generalized by the passage to the limit from the sets D (Lm) (see the beginning of Section 3
below) to Em.

Inequalities (21) can be proved in a similar way. The proof of Lemma 5 is complete.

3. UNIQUENESS OF STRONG SOLUTIONS

We first introduce function spaces and define strong solutions. As spaces of strong solutions of
the boundary value problems (1), (2), we take the Hilbert spaces Em that are the completions
of the sets

D (Lm) =
{

u ∈ H : u(t) ∈ D (A0(t)) , t ∈ ]0, T [ ;

d2mu

dt2m
,
dsu

dts
,

d[s/2]

dt[s/2]
As(t)

d[(s+1)/2]u

dt[(s+1)/2]
∈ H , s = 0, . . . , 2m − 1;

dku

dtk
∈ H m−k, k = 1, . . . ,m − 1;

diu

dti

∣∣∣∣
t=0

=
dju

dtj

∣∣∣∣
t=T

= 0, i = 0, . . . ,m, j = 0, . . . ,m − 2
}

in the Hermitian norms |||u|||m =
(
‖dmu/dtm‖2

0 + ‖u‖2
m

)1/2

. As spaces of right-hand sides of

Eq. (1), we take the Banach spaces F̂−(m−1) that are the completions of the set H in the norms

〈‖f‖〉−(m−1) = sup
v∈Êm−1






∣∣∣∣∣∣

T∫

0

(f, v)dt

∣∣∣∣∣∣
/〈‖v‖〉m−1




 ,

where the Hilbert spaces Êm−1 are the completions of the sets

D̂ m =
{

v ∈ H : dkv/dtk ∈ H m−k, 0 ≤ k ≤ m,

(
div/dti

)∣∣
t=0

=
(
div/dti

)∣∣
t=T

= 0, 0 ≤ i ≤ m − 1
}

in the Hermitian norms 〈‖v‖〉m−1 =
(∑m−1

k=0

∥∥(T − t)−1dkv/dtk
∥∥2

m−1−k

)1/2

. The boundary value

problems (1), (2) correspond to linear unbounded operators Lm (λm): Em ⊃ D (Lm) → F̂−(m−1)

with dense domains D (Lm). Throughout the following, we assume that the sets D̂ m are dense
in H , and here we restrict our considerations to one of sufficient conditions under which this
assumption is satisfied.

Lemma 6. If the inverse operators A−1
0 (t) ∈ B ([0, T ], L (H)) of positive self-adjoint operators

A0(t) have the strong derivatives djA−1
0 (t)/dtj ∈ B ([0, T ], L (H,W m−j(t))) , 1 ≤ j ≤ m, in H for

all t, then the sets D̂ m are dense in H .

The proof is similar to that of Lemma 1 in [9].

Remark 1. The density of D̂ m in H is necessary for the construction of a meaningful dual
pair Êm−1 ⊂ H ⊂ F̂−(m−1) in the sense of the representation of values of functionals from F̂−(m−1)

via the inner product in H . In applications to boundary value problems, the density of D̂ m in H

almost always takes place without any additional smoothness requirement for A−1
0 (t), since, as a
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rule, the set of all infinitely differentiable compactly supported functions lies in D̂ m and is obviously
dense in H .

Throughout the following, we assume that the operators Lm (λm) can be closed; i.e., it follows
from the fact that un → 0 in Em and Lm (λm)un → f in F̂−(m−1) as n → ∞ for un ∈ D (Lm) that
f = 0, and here we restrict our considerations to one of sufficient conditions for them to be closed.

Lemma 7. Let the assumptions of Lemma 5 with m > 1 and Lemma 6 be satisfied, let the
operators As(t) satisfy inequalities (5), and let

djA−1
0 (t)/dtj ∈ B

(
[0, T ], L

(
H,W 2m−j(t)

))
, 1 ≤ j ≤ m − 1.

Then each operator Lm (λm) is closable.

Proof. After integration by parts, we find that, by virtue of (5) and (20), the values of the
antilinear continuous functional f ∈

(
Êm−1

)′
on

v ∈ D m =
{
v̂ ∈ D̂ m : v̂(t) ∈ D (A0(t)) , t ∈ [0, T ]; A0(t)v̂ ∈ H

}

are

f(v) = lim
n→∞

T∫

0

(Lm(λ)un, v) dt

= lim
n→∞




−
T∫

0

(
dmu

dtm
,
dmv

dtm

)
dt +

m−1∑

k=0

T∫

0

(
A2k+1(t)

dk+1un

dtk+1
,
dkv

dtk

)
dt

+
m−1∑

k=1

T∫

0

(
A2k(t)

dkun

dtk
,
dkv

dtk

)
dt + λm

T∫

0

(un, A0(t)v) dt




 = 0, un ∈ D (Lm) .

Let us show that D m is dense in Êm−1. Let

m−1∑

k=0

T∫

0

(T − t)−2

(
A

(m−1−k)/(2m)
0 (t)

dkv

dtk
, A

(m−1−k)/(2m)
0 (t)

dkw

dtk

)
dt = 0 ∀v ∈ D m

for some function w ∈ Êm−1. Here we set v = A−1
ε (t)h = (I + εA0(t))

−1
h ∈ D m, ε > 0, where

dkh/dtk ∈ H , 0 ≤ k ≤ m, and (dih/dti)|t=0 = (dih/dti)|t=T = 0, 0 ≤ i ≤ m − 1, generalize
the resulting relation by the passage to the limit on all h ∈ H such that (T − t)−1dkh/dtk ∈ H ,
0 ≤ k ≤ m − 1, and (dih/dti)|t=0 = (dih/dti)|t=T = 0, 0 ≤ i ≤ m − 2, set h = w, and obtain the
relations

m−1∑

k=0

T∫

0

(T − t)−2

(
A−1

ε (t)A(m−1−k)/(2m)
0 (t)

dkw

dtk
, A

(m−1−k)/(2m)
0 (t)

dkw

dtk

)
dt

= −
m−1∑

k=1

k∑

j=1

Cj
k

T∫

0

(T − t)−2

(
A

(m−1−k)/(2m)
0 (t)

djA−1
ε (t)

dtj

dk−jw

dtk−j
, A

(m−1−k)/(2m)
0 (t)

dkw

dtk

)
dt.

Here and throughout the following, Cj
p is the binomial coefficient. In these relations, the passage

to the limit as ε → 0 in view of (29) implies that 〈‖w‖〉2m−1 = 0, i.e., w = 0. Since D m is dense
in Êm−1, we have f = 0. The proof of Lemma 7 is complete.
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Then we construct the closures Lm (λm) : Em ⊃ D
(
Lm

)
→ F̂−(m−1) of the operators Lm (λm).

The domains D
(
Lm

)
of the operators Lm (λm) contain all functions u ∈ Em for each of which

there exist a sequence un ∈ D (Lm) and a functional f ∈ F̂−(m−1) such that |||un − u|||m → 0 and
〈‖Lm (λm)un − f‖〉−(m−1) → 0 as n → ∞. In addition, we assume that

Lm (λm) u = lim
n→∞

Lm (λm) un = f.

Definition 2. The solutions of the operator equation Lm (λm) u = f , f ∈ F̂−(m−1), m = 1, 2, . . . ,
are referred to as strong solutions of the boundary value problems (1), (2).

Let us derive a priori estimates that imply the uniqueness and stability of solutions.

Theorem 1. If conditions I and III are satisfied,

dA−1
0 (t)/dt ∈ B

(
[0, T ], L

(
H,W 2m−1(t)

))
∩ B

(
[0, T ], L

(
W−2m(t),W−1(t)

))

for m > 1, D̂ m are dense in H , and the operators Lm (λm) admit the closures Lm (λm) , then there
exist constants c0(m) > 0 (independent of u) and sets Λ̂1 = [1,+∞[ for m = 1 and Λ̂m = [λ̂m,+∞[
for m > 1 such that

|||u|||m ≤ c0(m)
〈∥∥Lm (λm)u

∥∥〉
−(m−1)

∀u ∈ D
(
Lm

)
, ∀λm ∈ Λ̂m, m = 1, 2, . . . (28)

Proof. In the space H, we consider the smoothing operators A−1
ε (t) = (I + εA0(t))

−1, ε > 0,
with values in D (A0(t)). They have the following properties [9]:

(1) the norms ‖A−α
ε (t)‖

L (H) ≤ 1, 0 ≤ α ≤ 1, are bounded uniformly with respect to ε and t, and
∥∥A−α

ε (t)v − v
∥∥

0
→ 0 ∀v ∈ H , 0 ≤ α ≤ 1, (29)

as ε → 0;
(2) the operators A−1

ε (t) have the strong derivative dA−1
ε (t)/dt ∈ B ([0, T ], L (H)) in H.

By integrating only the term containing A0(t) by parts once in Lm (λm), we obtain

2Re

T∫

0

ec(T−t)(−1)m−1

(
d2mu

dt2m
, A−1

ε (t)J(t)u
)

dt

+ 2Re
m−1∑

k=1

T∫

0

ec(T−t)

([
dk

dtk
A2k+1(t)

d

dt
+

dk

dtk
A2k(t)

]
dku

dtk
, A−1

ε (t)J(t)u
)

dt

+ 2Re

T∫

0

ec(T−t)

(
A1(t)

du

dt
,A−1

ε (t)J(t)u
)

dt

+ (2m − 1)λm

T∫

0

ec(T−t)
(
A0(t)u,A−1

ε (t)u
)
dt

= 2Re

T∫

0

ec(T−t)
(
Lm(λ)u,A−1

ε (t)J(t)u
)
dt

+ λm

T∫

0

ec(T−t)(T − t)Φε(u, u)dt ∀u ∈ D (Lm) , m = 1, 2, . . . ,

(30)
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where J(t) = (T−t)(d/dt)+(m−1) and Φε(u, u) = ((d (A0(t)A−1
ε (t)) /dt) u, u)−c (A0(t)A−1

ε (t)u, u).
In the form Φε(u, u), we use the formula

d
(
A0(t)A−1

ε (t)
)
/dt = −A0(t)A−1

ε (t)
(
dA−1

0 (t)/dt
)
A0(t)A−1

ε (t)

in [9], inequalities (3), and the first property of the operators A−1
ε (t) and obtain

Φε(u, u) ≤
(
c
(1)
0 − c

) ∣∣∣A1/2
0 (t)A−1/2

ε (t)u
∣∣∣
2

. (31)

If, in (30), we use the estimate (31) and let ε tend to zero in the resulting inequality with regard
to property (29), then we obtain the inequalities

2Re

T∫

0

ec(T−t)(−1)m−1

(
d2mu

dt2m
, J(t)u

)
dt + 2Re

T∫

0

ec(T−t)

(
A1(t)

du

dt
, J(t)u

)
dt

+ 2Re
m−1∑

k=1

T∫

0

ec(T−t)

([
dk

dtk
A2k+1(t)

d

dt
+

dk

dtk
A2k(t)

]
dku

dtk
, J(t)u

)
dt

+ (2m − 1)λm

T∫

0

ec(T−t) (A0(t)u, u) dt ≤ 2Re

T∫

0

ec(T−t) (Lm (λm)u, J(t)u) dt

for all c ≥ c(1)
0 . Hence, by integrating by parts m times in the first integral and k times in the

third integral and by using the symmetry of the operators A2k(t), k = 1, . . . ,m − 1, we obtain
the inequalities

T∫

0

ec(T−t)

[∣∣∣∣
dmu

dtm

∣∣∣∣
2

+ (A0(t)u, u)

]
dt

≤ 2Re

T∫

0

ec(T−t) (Lm(λ)u, J(t)u) dt

+ 2Re
m−3∑

i=0

Ci
m−1

T∫

0

(
dmu

dtm
,

d

dt

[
dm−1−iec(T−t)

dtm−1−i

diJ(t)u
dti

])
dt

+ (2m − 2)Re

T∫

0

d2ec(T−t)

dt2

(
dmu

dtm
,
dm−2J(t)u

dtm−2

)
dt

−
m−1∑

k=1

(−1)k

{
2Re

k−1∑

i=0

Ci
k

T∫

0

dk−iec(T−t)

dtk−i

([
A2k+1(t)

d

dt
+ A2k(t)

]
dku

dtk
,
diJ(t)u

dti

)
dt

+ (2m − 2 − 2k)Re

T∫

0

ec(T−t)

([
A2k+1(t)

d

dt
+ A2k(t)

]
dku

dtk
,
dku

dtk

)
dt

−
T∫

0

dec(T−t)(T − t)
dt

(
A2k(t)

dku

dtk
,
dku

dtk

)
dt −

T∫

0

ec(T−t)(T − t)
(

dA2k(t)
dt

dku

dtk
,
dku

dtk

)
dt

}

−
m−1∑

k=0

(−1)k × 2Re

T∫

0

ec(T−t)(T − t)
(

A2k+1(t)
dk+1u

dtk+1
,
dk+1u

dtk+1

)
dt
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− (2m − 2)Re

T∫

0

ec(T−t)

(
A1(t)

du

dt
, u

)
dt − (2m − 1)c

T∫

0

ec(T−t)(T − t)
∣∣∣∣
dmu

dtm

∣∣∣∣
2

dt

+ [1 − (2m − 1)λm]

T∫

0

ec(T−t) (A0(t)u, u) dt. (32)

If m = 1, then the right-hand side of inequality (32) without the first integral can be estimated
above in view of inequalities (6) for s = 1 and i = 0 applied to the eighth integral on the right-hand
side by the quantity

(2c1 − c)

T∫

0

ec(T−t)(T − t)
∣∣∣∣
du

dt

∣∣∣∣
2

dt + (1 − λ1)

T∫

0

ec(T−t) (A0(t)u, u) dt,

which is nonpositive for all c ≥ c2 = max
{

c
(1)
0 , 2c1

}
and all λ1 ≥ 1.

If m > 1, then the right-hand side of inequality (32) without the first integral can be esti-
mated above in view of inequality (5) applied to the fourth, fifth, sixth, and ninth integrals and
inequality (6) applied to the seventh and eighth integrals of the right-hand side by the quantities

m−1∑

i=0

c
(i)
2m+2

T∫

0

(T − t)
∣∣∣∣
dmu

dtm

∣∣∣∣

∣∣∣∣
diu

dti

∣∣∣∣ dt +
m−2∑

i=0

c
(i)
2m+3

T∫

0

∣∣∣∣
dmu

dtm

∣∣∣∣

∣∣∣∣
diu

dti

∣∣∣∣ dt

+
m∑

k=1

k−1∑

i=0

c
(k,i)
2m+4

T∫

0

(T − t)
∣∣∣∣
dku

dtk

∣∣∣∣
m−k,t

∣∣∣∣
diu

dti

∣∣∣∣
m−i,t

dt

+
m∑

k=1

k−1∑

i=0

c(k,i)
2m+5

T∫

0

∣∣∣∣
dku

dtk

∣∣∣∣
m−k,t

∣∣∣∣
diu

dti

∣∣∣∣
m−i,t

dt

+
m−1∑

k=1

c
(k)
2m+6

T∫

0

(T − t)
∣∣∣∣
dku

dtk

∣∣∣∣
2

m−k,t

dt +
m−1∑

k=1

c
(k)
2m+7

T∫

0

∣∣∣∣
dku

dtk

∣∣∣∣
2

m−k,t

dt

+ [2c2m−1 − (2m − 1)c]

T∫

0

ec(T−t)(T − t)
∣∣∣∣
dmu

dtm

∣∣∣∣
2

dt

+ [1 − (2m − 1)λm]

T∫

0

ec(T−t)|u|2m,tdt,

(33)

where c
(i)
2m+p, c

(k,i)
2m+p ≥ 0 are constants depending only on c, T , m, c(i)

s , and cs. In the first two sums
of these quantities, we use the δ-inequality and the interpolation inequalities

∥∥∥∥
diu

dti

∥∥∥∥
2

0

≤ τ 1−i/m i

m

∥∥∥∥
dmu

dtm

∥∥∥∥
2

0

+ τ−i/m

(
1 − i

m

)
‖u‖2

0, τ > 0, 0 < i < m,

T∫

0

(T − t)
∣∣∣∣
diu

dti

∣∣∣∣
2

dt ≤ τ 1−i/m i

m

T∫

0

(T − t)
∣∣∣∣
dmu

dtm

∣∣∣∣
2

dt + τ−i/m

(
1 − i

m

) T∫

0

(T − t)|u|2dt,

τ > 0, 0 < i < m,

(34)
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in [3], and in the remaining sums we use the δ-inequality, inequalities (20) and (21), and

|u| ≤
∥∥A−1

0 (t)
∥∥α

L (H)
|Aα

0 (t)u| ∀u ∈ D (Aα
0 (t)) , 0 ≤ α ≤ 1, (35)

for α = 1/2 and find first the constants c2m+8 ≥ max{c(1)
0 , 2c2m−1/(2m− 1)} and then λ̂m ≥ 1 such

that, for c = c2m+8 and for all λm ≥ λ̂m, the expressions (33) are estimated above by the quantities
(1 − c2m+9) |||u|||2m, c2m+9 > 0.

Thus, by estimating the left-hand sides of inequalities (32) (with c = c2 and λ1 ≥ 1 for m = 1
and with c = c2m+8 and λm ≥ λ̂m for m > 1) from below via |||u|||2m and by collecting similar terms,
after obvious estimates, we obtain the inequalities

c2m+9|||u|||m ≤ 2 sup
v∈Em






∣∣∣∣∣∣

T∫

0

(
Lm (λm) u, ec2m+8(T−t)J(t)v

)
dt

∣∣∣∣∣∣

/
|||v|||m




 .

Since, by virtue of the inequalities
∥∥∥∥(T − t)−1 dkv

dtk

∥∥∥∥
2

m−1−k

≤ 8
∥∥∥∥

dk+1v

dtk+1

∥∥∥∥
2

m−k−1

+ 8
(

M1/(2m) + M−(m−k)/(2m)

)2

∥∥∥∥
dkv

dtk

∥∥∥∥
2

m−k

,

0 ≤ k ≤ m − 1,

whose proof is similar to the proof of Lemma 5, and inequalities (20), (34), and (35), we have
〈∥∥ec2m+8(T−t)J(t)v

∥∥〉
m−1

≤ c2m+10|||v|||m,

it follows that inequalities (28) are valid with constants c0(m) = 2c2m+10/c2m+9 and can be gen-
eralized by the passage to the limit from D (Lm) to strong solutions of the boundary value prob-
lems (1), (2). The proof of the theorem is complete.
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