Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/10719
Title: Goursat problem for two-dimensional second-order hyperbolic operator-differential equations with variable domains
Authors: Lomovtsev, F. E.
Motevich, A. V.
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Issue Date: 2012
Citation: Different. equations. 2012. Vol. 48, № 1. P. 44 – 54.
Abstract: We develop a modification of the energy inequality method and use it to prove the well-posedness of the Goursat problem for linear second-order hyperbolic differential equations with operator coefficients whose domains depend on the two-dimensional time. An energy inequality for strong solutions of this Goursat problem is derived with the help of abstract smoothing operators, and we prove that the range of the problem is dense by using properties of a regularizing Cauchy problem whose inverse operator is a family of smoothing operators of a new type. We give an example of a well-posed boundary value problem for a two-dimensional complete second-order hyperbolic partial differential equation with Goursat conditions and with a boundary condition depending on the two-dimensional time.
URI: http://elib.bsu.by/handle/123456789/10719
Appears in Collections:Архив статей механико-математического факультета до 2016 г.

Files in This Item:
File Description SizeFormat 
140 DU044(Lomovcev-Mot).pdf341,17 kBAdobe PDFView/Open
Show full item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.