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Abstract. The mathematical apparatus of continued logic in the problem of the compiex images
analysis is given. The effective solution of this problem can be get by using of the autormaton
model.

1. The mathematical apparatus of continued logic is given in the work [1] and the simplest
cases of its application, connected with informatics: geometric modeling, taking of the ap-
proximate solutions, optimization are described. There are many other problems from the
field of informatics, which are effectively sold with the help of continued logic apparatus
and its generalizations. In particular, when the object of research is complex rather effec-
tive is application of the logic determinants. At the research of the complex objects the "na-
ive" modeling of the simple objects [1] in the continued logic terms is not applicable and
we should seek the speciai models for getting the adequate continued-logical object de-
scription. The most resultative model of such kind is the finite dynamical automaton [2—4).
In this article we speak about images analysis problem, which could be solved by
using automaton model. The essence of this problem is: we have an image in the form of
collection of the visual objects in the space of given dimension and by formal way to calcu-
late characteristics of the interlocated objects for full understanding.
2. Let's consider random N -face Cartesian space E" filled with N -face objects with gen-
eral number of objects n. The objects are considered to be intersectional: filling of any ob-
ject of any field EY € EY does not prevent lying in E" of the other object. Position of
every object in the space E” is fuily defined. It is evidently that image P which is the re-
sult of all £” space objects interaction we can give in such form:

' P=FRUVAUKUP, (1)
where P, (k= 0,n) — image of k different objects intersection, including images
P(i,1,,...,iy) of all possible combinations (i,,i,,...,i; ) of k intersection objects

Po=  Blnh.i)k=1n 2)
i <ig <. <y
where P, — image in some field E; of the space £" that contains no one object; 7 —
image in the other field £ of the space E”, which has only single non-intersecting with
others objects; P, — image in the third field E5 of the space EV | in which we have only
pairwise intersecting objects and so on and 2, — image in the field £ of the space £",
containing only intersection of all n objects.

It's clearly that
EN =Ey UEY UK UEY; EN E} =@, i=]. (3
In its turn
EN = U ElfGiyewiy) EY(DAENINY =9, 12J 4)

fiﬂlz ‘(...‘(I‘.

where E|'(J) — the field of space E, where is intersection only of the concrete set k of
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the objects J = (i, ....i; ).

The Problem 1 is to find in the field £ according to images P, in the form of any
fixed number' intersections & non-concrete objects (k =0,n). The problem 2 is to find
fields E; (J) according to images P, (/) in the form of intersections J = (i,,...,i; )} of any
number k£ concrete objects i,...,i; (k=1,n). The problem 2 is more detailed. From its so-
lution we always-can get the solution of the problem 1, using formula (4). Let's call the
problems 1, 2 the problems of image P analysis.

3. The problems for space £ of dimension N can be interpreted as follows.

1) The space E! i.e. the line. The objects for it are intervals given on the line and
intersection by 2, 3 and so on till #» (# — general number of intervals) is possible. We must
find the part of the line E!, where sharp k of any intervals intersect, & = 0,n (problem 1)
or find domains of the line £ + (i) Where & concrete intervals #,..,i, intersect,
(k =1, n) (problem 2).

2) Space EZ, i.e. flatness. The objects for it are given on it rectangies, which sides
are paralleled to coordinate axes and intersection by 2, 3 an » is possible. The choice of
rectangles as interacting objects evidently does not limit the community of considering, be-
cause any flat figure we can submit with any degree of exactness with the help of the in-
scribed in it "tightly packed” rectangles. We should find domain on the flatness E}, where
sharp k of any rectangles intersect, k = 0,n (problem 1) or find fields on the flamess
E}(iy....,i;) where k of the concrete rectangles intersect i, ..., i, k =1,1 (problem 2).

3) Space E’, i.e. three-dimensional space. The objects for it are given in it right
parallelepipeds with the sides which are paralleled to coordinate axes. Intersection of the
parallelepipeds by 2, 3, an n is possible. The choice of the right parallelepipeds as the ob-
jects in the three-dimensional space does not limit the community, because any three-
dimensional object can be submit with the help of the "tightly packed" right parallelepipeds
inscribed in it. We should find domains Ek in the space E°, where sharp k para.llelepl-
peds intersect indifferently which ones, & = 0 n (problem 1) or find domains E} o (o)
in E* where k concrete parallelepipeds i), iy, k = 1,1 intersect (problem 2).

4. Let's consider the general case of the problems 1, 2 of image P analysis in the space
EV of the optional dimension N . According to (1) the optional image P we get from in-
tersection images P, (k = 0,n) of sharp k of any different objects and domains E;’ of in-
tersections P, existing for different £ according (3) do not intersect. According to this let's
introduce the system of binary functions f} (x),k = 0,n, in the space E" .

Lxe K.,

fk(x):{o,xEEf.

As we can see from (5) the optional k-th function f;(x) takes meaning 1 in the
domain E; , where intersection P, exists, and meaning 0 in others spaces where this inter-
section does not exist. So it would be naturally to call function f;(x) the k-th normal
spectrat function of image P(1), and the collection of all such functions
fx)= {f.,(x),..., S (x)} — the normal spectrum of point image. Analogically, according to
(2) an optional intersection £, we get from intersections P, (i|,...,i, ) of sharp & different
concretely determined objects i,...,i, and the domains E)(i,,...,;) of intersection
P (i,....iy ) existing for different combination of objects (4,,...,i,) according to (4) do not

(3

118



intersect. According to it let's introduce the system of binary functions G(x|i.....i;).
k=Ln,i<i <Ki, <n inspace EY | determined in the form.

. LxeE) (i)
Gx | §sersdy ) = kN( 1 k)
0, x & Ep (i, 0y )

From (6} we see that the optional % -th function G(x|},,...,i;) is equal 1 in domain
E} (i},....i;) where intersection P, (iy,....i,) exist and is equal 0 in the other domains,
where this intersection does not exist. In according to this let's call given function the £ -th
marked spectral function of P image. The collection of all such functions for all possible
combinations of objects by 1,2,...,» let's call marked spectrum of image P and designate it
G(x). So in contrast to normal spectrum some spectral functions of which display the do-
mains of space where concrete image's combinations intersection is depicted. But both
have the property of indication of domains with all possible typical fragments of given im-
age. It prompts us the idea for solving Problems 1 and 2, considered in the next point.
§. As all objects in the space E” are N -dimensional right parallelepipeds in E” with 1 the
sides paralleled to N coordinate axes, the intersection of any number & objects (k =1,n)
is N -dimension right parallelepiped in £ with the sides paralieled to N coordinate
axes. So any non-concretized P, or concretized P, (j),...,J;) by structure intersection of k&
objects could be projected on all coordinate axes x,,...,.xy :

Py = [Pox)), P (%)) P (23O} K = 1om (7

PoGyseniy ) =5 [Py L igseresiy Do P (83 [y ooy Yo Py (X Vi B ) =L, (8)
where P (x,) is the project of objects F; intersection on the axe x,, and P (x; |i,....i;) is
the project of objects P, (ii,...,#; ) on the same axe. The difference between this projects is
the same as in initial intersections: in the project P,(x,) is pointed only number k& of ob-
jects in initial intersection and in project P (x;|i,....,i;) is given else concrete list
(§,,...,7; ) of objects in intersection. Any intersection P, according to (2) consists in general
case of C; distributed in the space intersections P (j;,....i;) of concrete objects
(ys--riz ), {k = 1,n) . So the project of the intersection F, on any axis consists as well in
general case from C¥ distributed along this axis projects on it of intersection £, (i,,....#; )

P(x,)= O B lii)hk=Lnr=1N.
iy <y <K <y

This is the second distinction between projects (7) and (8). The likeness between
them is: we have one-valued adequacy of objects P, (i),...,7i; ) any intersection and its pro-
jects and one-valued adequacy of objects P, any intersection and its projects at the lack in
general case one-valued reciprocal correspondence. However in the case N =1 (i.e. in one-
dimensional space) we have one-to-one correspondence between objects intersections and
their projects on the only in this axis. The introduced objects of N -dimensional objects in-
tersections — normal P, (x,) and marked P, (x]j,...,i,) are one-dimensional objects with
which it is much easier to work. For them the general N -dimensional spectral function —
normal (5) and marked (6) jump in according spectral functions from one variable:

l, x, eE,,
fk(‘xr)={0 rk

(6)

kza,_n,rzﬁ; (9)
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Go(x, iy =4 T SEaGld 5 L TR (10)
- 0, x, & B, (,.7)

According to (9) the & -th function f, (x,) takes the value 1 in that part E|, of axis
x,, where the project P, (x,) of intersection P, exists and the value 0 in the other parts
where the project is absent. So the function f,(x,) could be called the k-th one-
dimensional normal spectral function of the intersection P, project P, (x,) on the axis x,.
Analogically, according to (10), the & -th function G,(x, | j,,....i; } is equal 1 in that part of
E) (i,,...i,) of the axis x,, where the project P, (x, |i,,....i, )} of intersection P,(i,,....i,)
exists and is equal 0 in the other parts where this project is absent. So the function
G, (x, |i,,...,1,) can be called the k -th marked one-dimensional speciral function of the in-
tersection P, (i,,...,i, ) projects P,(x, | i.,....i,} onthe axis x, . L

Let's call the collection of ali functions f,(x,),k=0,n the normal one-
dimensional spectrum of image P(1) along axis x, of N -dimensional space (r =1, N).
Analogically the collection of all functions G,(x, | i,....iy ), k =1,n can be called the
marked one-dimensional spectrum of the image P(l) along axis x, of N -dimensional
space (r =L, N).

Introduced one-dimensional spectra have the property of indication of the corre-
sponding axes N -dimensional space domains, where the project of considered intersection
of the objects in the space is. From this follows that Problems 1 and 2 of the image P in
the N -dimensional space analysis rationally to try to solve by the reducing them to the
one-dimensional spectrum projects of this image on all N axes of the space analysis or
simply to calculating one-dimensional spectra along paralleled lines intersecting the image.
6. The realization of idea given in p. 5. Let's begin from the analysis of the images in the
one-dimensional space i.e. on the line. The problem 1 in this case includes the following.
The image P in the form of the n one-dimensional objects - closed intervals
[a,,b,],i =1,7 on the axis x is given (fig.1). This intervals can interact forming different
intersection. As a result the image P disintegrates accordingly to (1) into the images: F, in
the domain E, on the axis x, which does not contain any intervals; P, in the space E|,
containing only any single non-intersecting with the others intervals; P, in the domain E,,
containing only pairwise intersecting intervals, ... P, in the domain E, containing only in-
tersection of all intervals. The problem consists in finding domains £ |,k =0,n on the axis
X , containing the images P, , k& =0,» in the form any fixed number % intersection of non-
concretized (i.e. any) intervals.

E,'
] 2 3 f
1 1 | " em Pﬂ
1 & E,! by E, gt B by g, > an b,

Eo

Fig 1

Let interpret the axis x points as the moments of time. Then the problem 1 with the
given system of intervals can be put to accordance to the mathematical model in the form
of the finite automata without memory (fig. 2) with » binary inputs x,,...,x,, x, € {0,1} on
which single impulses 1(q,,b,) are being given (by one on every input), existing in the time
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intervals (a,,b,) according to given intervals (i = 1,#) This automaton has one binary out-
put y, y € {01}, on which the fundamental symmetrical index p(p = 0,n) Boolean func-
tion F? of n input variables x,....,x, is being realized. So, the automaton output variable
is being expressed with the help of its input variables in the form
y = EP(%,5.,%,); ¥, %, € {0,1}. (1)
As it is known [4] the fundamental symmetrical Boolean function F” =1 only
when p of any its arguments are equal 1 and F” =0 in the rest of cases.

Xi
xn
Fig 2

So, the output varniable of automaton model y =1 only in that case when p of any
its input variables x,, are equal 1. It means that on the output of this automaton the single
impulses are being yielded in those time intervals in which p input single impulses act si-
multaneously. So (look at (5}, (9)) automaton-model (look at fig. 2) with the realized Boo-
iean function F,” yieids in the out the normal one-dimensional spectral function f,(x) of
one variable x, marking with its single values those domains of the axis x where p of n
given intervals [a,,b,], i =1,n are being intersected. Varying the value of index p of the
automaton-model function F” from 0 to n we'll get the normal one-dimensional spectrum
S =, (), £,(2),...., £, (x)} components of which are functions marking the domains of
the axis x where any possible number p (p =0,n) of the given intervals [a,,b,] intersect.
This is the solution of the Problem 1 of analysis of the image in the one-dimensional space.

The solution of the Problem 2 of the image in the one<limensional space analysis dif-
fers from given by the choice of the automaton-model function in form

y=®(x,,...x,) = (X5 e Xy, XX, VK VX, ), x;,y € {013 (12)
The solution of problems 1, 2 of the images in the two- and three-dimensional

space analysis with the help of section method is being reduced to the solution of this prob-
lems in one-dimensional space.
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