Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/94517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGomes, M. I.-
dc.contributor.authorCaeiro, F.-
dc.date.accessioned2014-04-22T06:10:40Z-
dc.date.available2014-04-22T06:10:40Z-
dc.date.issued2010-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/94517-
dc.description.abstractIn this paper, we make use of probability weighted moments of largest observations, in order to build classes of estimators of the extreme value index, the primary parameter in statistics of extremes. Due to the speci city of the estimators, we propose the use of bootstrap computer intensive methods for an adaptive choice of the optimal number of order statistics to be used in the estimation. The developed methodology is applied to a data set in the eld of insurance.ru
dc.language.isoenru
dc.publisherMinsk: BSUru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатикаru
dc.titleAdaptive probability weighted moments estimationru
dc.typeconference paperru
Appears in Collections:Section 1. ROBUST AND NONPARAMETRIC DATA ANALYSIS

Files in This Item:
File Description SizeFormat 
S01-GomesCaeiro.pdf652,71 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.