Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/94341
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBatisti´c, Benjamin-
dc.contributor.authorManos, Thanos-
dc.contributor.authorRobnik, Marko-
dc.date.accessioned2014-04-18T09:20:01Z-
dc.date.available2014-04-18T09:20:01Z-
dc.date.issued2013-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2013. - Vol. 16, N 2. - P. 105-115ru
dc.identifier.issn1561-4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/94341-
dc.description.abstractWe study dynamically localized chaotic eigenstates in the finite dimensional quantum kicked rotator as a paradigm of Floquet systems and in a billiard system of the mixed-type (Robnik 1983) as a paradigm of time-independent Hamilton systems. In the first case we study the spectrum of quasienergies, in the second one the energy spectrum. In the kicked rotator we work in the entirely chaotic regime at K = 7, whilst in the billiard we use the Poincaré Husimi functions (on the Poincaré Birkhoff surface of section) to separate the regular and chaotic eigenstates, and then perform the analysis of 587654 high-lying chaotic eigenstates (starting at about 1.000.000 above the ground state). In both cases we show that the Brody distribution excellently describes the level spacing distribution, with an unprecedented accuracy and statistical significance. The Berry-Robnik picture of separating the regular and chaotic levels in the case of the billiard is also confirmed.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleThe Relevance of Brody Level Spacing Distribution in Dynamically Localized Chaotic Eigenstatesru
dc.typearticleen
Располагается в коллекциях:2013. Volume 16. Number 2

Полный текст документа:
Файл Описание РазмерФормат 
v16no2p105.pdf787,32 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.