Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/9325
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVatlin, S.-
dc.date.accessioned2012-05-20T10:00:57Z-
dc.date.available2012-05-20T10:00:57Z-
dc.date.issued2012-
dc.identifier.citationModeling and Simulation : MS'2012 : Proc. of the Intern. Conf., 2—4 May 2012, Minsk, Belarus. - Minsk: Publ. Center of BSU, 2012. - 178 p. - ISBN 978-985-553-010-8.-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/9325-
dc.description.abstractFuzzy classification models are one of the basic types of data mining models. The concepts of the simplicity and efficiency for fuzzy classifiers are introduced. We also introduced the concepts of consistent and degenerate selfguesssing fuzzy classifiers. The Occam’s Razor principle for data mining models based on fuzzy classification algorithms is formulated. The quality criterion for degenerate selfguessing fuzzy classifiers based on invariant simplicity measure is proved. The theorems on the conditions of improvement of degenerate selfguessing fuzzy classifiers are proved.ru
dc.language.isoenru
dc.publisherМинск: БГУru
dc.titleThe Occam's Razor Principle for Data Mining Models Based on Degenerate Selfguessing Fuzzy Classification Algorithmsru
dc.typeArticleru
Располагается в коллекциях:2012. Моделирование процессов систем: Труды Международной конференции

Полный текст документа:
Файл Описание РазмерФормат 
37r 161.pdf288,36 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.