Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/93205
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGather, U.-
dc.date.accessioned2014-04-02T09:48:28Z-
dc.date.available2014-04-02T09:48:28Z-
dc.date.issued2007-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/93205-
dc.description.abstractWe present procedures for online signal extraction from intensive care data. These filtering methods use high-breakdown linear regression methods in moving time windows. In particular, we concentrate on the performance of Least Median of Squares (short: LMS) regression in this context. Comparing the LMS to other robust regression techniques, we discuss its merits for preserving clinically relevant patterns such as trends, abrupt shifts and extremes and for the removal of irrelevant spikes or outliers.ru
dc.language.isoenru
dc.publisherMinsk: BSUru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Информатикаru
dc.titleHampel’s LMS in the Analysis of Online Monitoring Dataru
dc.typeconference paperru
Appears in Collections:PLENARY LECTURES

Files in This Item:
File Description SizeFormat 
11.pdf100,62 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.