Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/51956
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Luz, M. M. | - |
dc.date.accessioned | 2013-11-15T08:12:27Z | - |
dc.date.available | 2013-11-15T08:12:27Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Computer Data Analysis and Modeling: Theoretical and Applied Stochastics : Proc. of the Tenth Intern. Conf., Minsk, Sept. 10–14, 2013. Vol 1. — Minsk, 2013. — P. 165-168 | ru |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/51956 | - |
dc.description.abstract | The problem of optimal estimation of the functional ANξ =PN k=0a(k)ξ(k) depending on the unknown values of stochastic sequence ξ(k) with stationary nth increments from observations of the sequence ξ(k) + η(k) at points of time k = N + 1,N + 2,... and observations of the sequence ξ(k) at points of time k = −1,−2,... is considered. Formulas for calculating the mean square error and the spectral characteristic of the optimal linear estimate of the functional are proposed under condition of spectral certainty, where spectral densities of the sequences ξ(k) and η(k) are exactly known. Minimax (robust) method of estimation is used in the case where spectral densities are not known exactly, but sets of admissible spectral densities are given. Formulas that determine the least favorable spectral densities and the minimax spectral characteristics are proposed for some definite sets of admissible densities. | ru |
dc.language.iso | en | ru |
dc.publisher | Minsk : Publ. center of BSU | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | ru |
dc.title | Robust interpolation problem for stochastic sequences with stationary increments | ru |
dc.type | Article | ru |
Располагается в коллекциях: | 2013. Computer Data Analysis and Modeling. Vol 1 Vol. 1 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
165-168.pdf | 374,72 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.