Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/51941
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPerrotta, D.-
dc.contributor.authorRiani, M.-
dc.contributor.authorCerioli, A.-
dc.contributor.authorTorti, F.-
dc.date.accessioned2013-11-15T07:41:27Z-
dc.date.available2013-11-15T07:41:27Z-
dc.date.issued2013-
dc.identifier.citationComputer Data Analysis and Modeling: Theoretical and Applied Stochastics : Proc. of the Tenth Intern. Conf., Minsk, Sept. 10–14, 2013. Vol 1. — Minsk, 2013. — P. 87-88ru
dc.identifier.urihttp://elib.bsu.by/handle/123456789/51941-
dc.description.abstractWe propose some computational improvements for a robust method for the identification of atypical observations known as forward search, which is based on the idea of monitoring quantities of interest, such as parameter estimates and test statistics, as the model is fitted to data subsets of increasing size. We provide a recursive implementation of the procedure which exploits the information of the previous step and we demonstrate the computational advantages of the new approach using both synthetic and real data.ru
dc.language.isoenru
dc.publisherMinsk : Publ. center of BSUru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетикаru
dc.titleScalability properties of a new forward search algorithmru
dc.typeArticleru
Appears in Collections:2013. Computer Data Analysis and Modeling. Vol 1
Vol. 1

Files in This Item:
File Description SizeFormat 
87-88.pdf303,88 kBAdobe PDFView/Open
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.