Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/339955Полная запись метаданных
| Поле DC | Значение | Язык |
|---|---|---|
| dc.contributor.author | Jalilov, A. A. | |
| dc.date.accessioned | 2026-01-13T10:14:41Z | - |
| dc.date.available | 2026-01-13T10:14:41Z | - |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Computer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the XIV Intern. Conf., Minsk, Sept. 24–27, 2025 / Belarusian State Univ. ; eds.: Yu. Kharin (ed.-in-chief) [et al.]. – Minsk : BSU, 2025. – Pp. 90-94. | |
| dc.identifier.isbn | 978-985-881-830-2 | |
| dc.identifier.uri | https://elib.bsu.by/handle/123456789/339955 | - |
| dc.description.abstract | Let Cr(ρ) be the set of all critical circle which maps are C 1 conjugate to f cr ∈ C 3 critical circle homeomorphisms having a single x cr critical point and rotation number ρ := [k,k,k,,...]. Let µ := µ f denote the unique probability invariant measure of the map f ∈ Cr(ρ). Define a decreasing sequence {c n := c n (θ), n ≥ 1} for some θ ∈ (0,1) is such that a µ−measure of the interval (x cr ,c n ] satisfies µ([x cr ,c n ]) = θ ·µ([x cr ,f q n (x cr )]), where q n is the return times associated with the linear rotation f ρ = x+ρmod1. We study weak convergence of normalized hitting times. Moreover, we show that limiting distribution is singular with respect to the Lebesgue measure | |
| dc.language.iso | en | |
| dc.publisher | Minsk : BSU | |
| dc.rights | info:eu-repo/semantics/restrictedAccess | |
| dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | |
| dc.title | Weak convergence of hitting times for critical circle maps | |
| dc.type | conference paper | |
| Располагается в коллекциях: | 2025. Computer Data Analysis and Modeling: Stochastics and Data Science | |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.

