Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/339081
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorWang, Hui-
dc.contributor.authorWang, Haoliang-
dc.contributor.authorShahab, Siyamak-
dc.contributor.authorCheng, Hezhang-
dc.contributor.authorAtroshko, Mikhail-
dc.contributor.authorWang, Xianpeng-
dc.contributor.authorYe, Meng-
dc.date.accessioned2025-12-16T13:06:34Z-
dc.date.available2025-12-16T13:06:34Z-
dc.date.issued2025-
dc.identifier.citationResults in Chemistry. 2025 Sep;17:102603.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/339081-
dc.description.abstractThe widespread presence of antibiotic residues in aquatic environments, resulting from the extensive use of antibiotics in livestock and aquaculture, has driven the search for effective remediation methods. Adsorption, particularly using biochar, has emerged as a promising approach. In this study, rice straw-derived biochar (denoted as B5) modified with phosphoric acid (H3PO4-modified B5, PB5) and potassium hydroxide (KOHmodified B5, KB5) at the same concentration was investigated for ciprofloxacin (CIP) adsorption. PB5 exhibited a maximum Langmuir adsorption capacity of 25.6 mg/g for CIP, surpassing KOH-modified (8.77 mg/g) and unmodified biochar (3.71 mg/g). The optimized pH for adsorption was 3.0–7.0, where electrostatic interactions and hydrogen bonding dominated. Characterization revealed that acid-base modification altered the surface morphology, pore structure, and functional groups of biochar. PB5 exhibited a rougher surface, increased porosity, and enhanced oxygen-containing functional groups, while KB5 had a more pronounced increase in large specific surface area (SSA). Adsorption experiments indicated a multistage process involving chemisorption, external diffusion, and intraparticle diffusion. The pseudo-second-order model and the Freundlich isotherm best described the adsorption behavior, indicating chemisorption-dominated non-homogeneous adsorption. Density Functional Theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) analysis identified the -COOH group on biochar as the main active site for CIP adsorption, with a strong dual-force interaction. pH and anion studies showed that pH affected adsorption via electrostatic interactions, and divalent anions, especially SO4 2− , inhibited adsorption, more so for PB5 due to its larger pore size. This study elucidates the distinct adsorption mechanisms of acid and alkali-modified biochar for CIP, providing valuable insights for the design and optimization of biochar for antibiotic removal in water treatment, Further research should explore diverse antibiotic models and advanced research tools to address real-world environmental challenges.ru
dc.language.isoenru
dc.publisherElsevierru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::МЕЖОТРАСЛЕВЫЕ ПРОБЛЕМЫ::Охрана окружающей среды. Экология человекаru
dc.titleEnhanced adsorption of ciprofloxacin by biochar with acid and alkali modification: Performance comparison and mechanism analysisru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1016/j.rechem.2025.102603-
dc.identifier.scopus105012722003-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS

Полный текст документа:
Файл Описание РазмерФормат 
3.pdf1,85 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.