Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/337815
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorWang, Sh.-
dc.contributor.authorWang, J.-
dc.contributor.authorYin, R.-
dc.date.accessioned2025-11-27T14:42:48Z-
dc.date.available2025-11-27T14:42:48Z-
dc.date.issued2025-
dc.identifier.citationFront. Artif. Intell. 2025;8 :1637842ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/337815-
dc.description.abstractMalignant melanoma is the deadliest skin cancer, yet its early dermoscopic presentation closely mimics benign melanocytic nevi. Conventional visual or dermoscopic screening therefore suffers from high miss rates and generates excessive biopsies. In this study we focus on Chinese East-Asian patients and introduce a reversed-exclusion strategy—classifying “benign first, exclude malignancy”: lesions that fully meet benign nevus criteria are deemed low-risk; all others are flagged as high-risk. Building on the real-time detector YOLOv10, we incorporate three medical-oriented upgrades: (i) a PP-LCNet backbone to preserve sub-3 mm textures; (ii) a Multiscale Contextual Attention (MCA) neck to enhance cross-scale aggregation; and (iii) a Shape-IoU loss that jointly optimises position, scale, and curvature. The model was trained on a multi-centre dermoscopic dataset from three tertiary hospitals in mainland China (2,040 benign nevi) and independently tested on 365 biopsy-proven melanomas collected at the same medical institution but drawn from a demographically distinct patient cohort, achieving a detection mAP@0.5 of 97.69% for benign lesions and a melanoma false-negative rate (FNR) of only 0.27%. By delivering high-confidence benign identification followed by malignant exclusion, the proposed model offers a high-precision, low-risk pathway for early melanoma screening in Chinese clinical settings. It can markedly reduce unnecessary biopsies while keeping the miss rate below the clinical safety ceiling of 0.5%, thus preserving the life-saving window afforded by early detectionru
dc.language.isoenru
dc.publisherIOS Pressru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Медицина и здравоохранениеru
dc.subjectЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Электроника. Радиотехникаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биологияru
dc.titleYOLOv10-based detection of melanocytic nevi: reverse exclusion optimization for melanoma screeningru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.3389/frai.2025.1637842-
dc.identifier.scopus105017096853-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS

Полный текст документа:
Файл Описание РазмерФормат 
sndt740d.pdf2,22 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.