Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/334826
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorЧжан Хайнин-
dc.date.accessioned2025-09-24T12:44:37Z-
dc.date.available2025-09-24T12:44:37Z-
dc.date.issued2025-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/334826-
dc.description.abstractРЕФЕРАТ СРАВНИТЕЛЬНЫЙ АНАЛИЗ СИСТЕМ РАСПОЗНАВАНИЯ РУКОПИСНОГО ТЕКСТА НА ОСНОВЕ АРХИТЕКТУР FLOR И TENSORFLOW Дипломная работа: 58 с., 41 рис., 6 табл., 6 источников. Ключевые слова: РАСПОЗНАВАНИЕ РУКОПИСНОГО ТЕКСТА, ГЛУБОКОЕ ОБУЧЕНИЕ, АРХИТЕКТУРА FLOR, TENSORFLOW, CNN, BILSTM, CTC, ОБРАБОТКА ИЗОБРАЖЕНИЙ, МЕХАНИЗМ ВНИМАНИЯ, ОПТИМИЗАЦИЯ МОДЕЛИ. Объект исследования - системы распознавания рукописного текста на основе архитектур Flor и TensorFlow. Цель работы - проведение комплексного сравнительного анализа и оценки эффективности систем распознавания рукописного текста, реализованных на основе системы Flor и фреймворка TensorFlow. Методы исследования - сравнительный анализ, экспериментальное исследование, глубокое обучение, компьютерное зрение, конволюционные нейронные сети, рекуррентные нейронные сети, методы оптимизации моделей. Полученные результаты и их новизна: проведено систематическое сравнение двух архитектур распознавания рукописного текста. Архитектура Flor демонстрирует превосходную точность распознавания (CER <10%) и надежность благодаря инновационному многоуровневому конволюционному экстрактору признаков. Реализация на TensorFlow показывает значительные преимущества в эффективности развертывания и использовании ресурсов, достигая высокой производительности при меньших вычислительных затратах. Область применения: оцифровка документов, автоматизация обработки рукописных форм, интеллектуальное образование, системы документооборота, мобильные и встраиваемые системы распознавания текста. Практическая значимость: результаты сравнительного анализа предоставляют важные рекомендации для выбора и оптимизации архитектуры систем распознавания рукописного текста в различных практических сценариях применения.ru
dc.language.isoruru
dc.publisherБГУ, ФПМИ, Кафедра информационных систем управленияru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Информатикаru
dc.titleСистема распознавания рукописных текстов: дипломная работа / Чжан Хайнин; БГУ, Факультет прикладной математики и информатики, Кафедра информационных систем управления; науч. рук. Краснопрошин В. В.ru
dc.typediploma thesisru
dc.rights.licenseCC BY 4.0ru
Располагается в коллекциях:Лучшие дипломные проекты, защищенные студентами факультета прикладной математики и информатики. 2025

Полный текст документа:
Файл Описание РазмерФормат 
ДР_ПИ_ЧжанХайнин_2025.pdf4,2 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.