Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/331440
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSheleg, Anna Sergeevna-
dc.date.accessioned2025-06-29T18:15:24Z-
dc.date.available2025-06-29T18:15:24Z-
dc.date.issued2025-06-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/331440-
dc.description.abstractThis thesis explores the application of artificial neural networks (ANNs) for accurately identifying defects, such as cavities and cracks, in solid structures. The research provides a comprehensive analysis of methodologies that integrate innovative approaches, including genetic algorithms and finite element methods, with advanced artificial intelligence technologies.ru
dc.language.isoenru
dc.publisherMinsk : BSUru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleDETERMINING THE LOCATION OF A CAVITY IN A SOLID STRUCTURE USING ARTIFICIAL NEURAL NETWORKS : Annotation for the graduation thesis / Anna Sergeevna Sheleg ; BSU, FACULTY OF MECHANICS AND MATHEMATICS, Department of Theoretical and Applied Mechanics; Academic Supervisor Marmysh D.Y..ru
dc.typeannotationru
dc.rights.licenseCC BY 4.0ru
Appears in Collections:Механика (научно-производственная деятельность).2025

Files in This Item:
There are no files associated with this item.
Show simple item record Google Scholar



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.