Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/326722
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorShalyt-Margolin, A.-
dc.date.accessioned2025-03-04T07:15:01Z-
dc.date.available2025-03-04T07:15:01Z-
dc.date.issued2024-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2024. - Vol. 27. - № 1. - P. 47-57ru
dc.identifier.issn1561-4085-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/326722-
dc.description.abstractThis paper presents one of the approaches to solution of the problem of the repulsion origin in gravity. The approach is based on the property of compactness characteristic for a self-gravitating object in General Relativity. Here we understand compactness as estimation of the upper boundary for mass such an object in a static two–dimensional sphere. Repulsion originates when this boundary is violated. The main hypothesis is formulated in the form of the principle of maximal mass within a two-dimensional static sphere. It is demonstrated that the principle is true for Schwarzschild black holes on absorption of the matter in the process of accretion, both in the classical case and with due regard for quantum-gravitational corrections. The results have been extended to black holes with the Schwarzschild-de Sitter metric in the early Universe. The applicability of the principle suggested is analyzed for the early and for the present Universe.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleMaximal Mass within Sphere, Repulsion, Black Holes, and Some Implicationsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.5281/zenodo.10889846-
Располагается в коллекциях:2024. Volume 27. Number 1

Полный текст документа:
Файл Описание РазмерФормат 
v27no1p47.pdf491,03 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.