Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/326721
Заглавие документа: | Scattering in the Gaussian Space in Semi-Classical Approximation |
Авторы: | Kurochkin, Yu. A. Shaikovskaya, N. D. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Дата публикации: | 2024 |
Издатель: | Minsk : Education and Upbringing |
Библиографическое описание источника: | Nonlinear Phenomena in Complex Systems. - 2024. - Vol. 27. - № 1. - P. 37-46 |
Аннотация: | Gaussian space is a three-dimensional Gaussian hypersurface embedded in a fourdimensional Euclidean space. The curvature of space depends on the distance to the origin. At a large distance, such a space is practically Euclidean, and because of this there are solutions to the Schr¨odinger equation that behave at infinity like plane waves. Without introducing any additional potential, the problem of particle’s scattering in the Gaussian space is considered in semi-classical approximation. The role of the scattering center is played by the space itself, which is strongly curved at the origin. In this paper the complete WKB (Wentzel-–Kramers Brillouin) solutions to the Schr¨odinger equation have been built. Approximate expressions for the scattering phase shifts were obtained. The total cross section energy dependence was calculated numerically using these phase shifts. Both results display the tendency of the cross section to a constant value at high energy regime. |
URI документа: | https://elib.bsu.by/handle/123456789/326721 |
ISSN: | 1561-4085 |
DOI документа: | 10.5281/zenodo.10889758 |
Лицензия: | info:eu-repo/semantics/openAccess |
Располагается в коллекциях: | 2024. Volume 27. Number 1 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
v27no1p37.pdf | 574,54 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.