Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/311273
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHongxu Quan-
dc.contributor.authorBohush, Rykhard-
dc.contributor.authorGuangdi Ma-
dc.contributor.authorYang Weichen-
dc.contributor.authorAblameyko, S.-
dc.date.accessioned2024-04-11T09:12:45Z-
dc.date.available2024-04-11T09:12:45Z-
dc.date.issued2023-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2023. - Vol. 26. - № 1. - P. 83-97ru
dc.identifier.issn1561-4085-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/311273-
dc.description.abstractMulti-object tracking (MOT) is a key research area in video-surveillance systems. The most common method for MOT is tracking-by-detection. Efficiency of tracking is influenced by the detector and tracker used in the approach. In this paper, we use the current well-performing StrongSORT tracker and investigate CNN YOLO family to choose better detector. To improve the efficiency of person tracking, a choice of YOLO modifications is done in the paper. Training experiments using the MOT17 and MOT20 as an evaluation benchmark are presented. We defined that using YOLOv6l as a detector, the tracker performance is better compared to other YOLO family models. The tracking algorithm joining StrongSORT and YOLOv6l is presented. The experimental results show that the good results of tracking with the YOLO series model integrated in StrongSORT depend not only on the performance of the detector, but also on the video environment.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titlePeople Detecting and Tracking in Video by CNN YOLO and StrongSORT Combined Algorithmru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.33581/1561-4085-2023-26-1-83-97-
Располагается в коллекциях:2023. Volume 26. Number 1

Полный текст документа:
Файл Описание РазмерФормат 
v26no1p83.pdf1,23 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.