Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/305525
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorFabrykan, Marharyta-
dc.contributor.authorThe Forecasting Collaborative-
dc.date.accessioned2023-12-04T08:36:57Z-
dc.date.available2023-12-04T08:36:57Z-
dc.date.issued2023-
dc.identifier.citationNat. Hum. Behav. 2023; 7(4):484-501.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/305525-
dc.description.abstractHow well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing the accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender–career and racial bias. After we provided them with historical trend data on the relevant domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N = 86 teams and 359 forecasts), with an opportunity to update forecasts on the basis of new data six months later (Tournament 2; N = 120 teams and 546 forecasts). Benchmarking forecasting accuracy revealed that social scientists’ forecasts were on average no more accurate than those of simple statistical models (historical means, random walks or linear regressions) or the aggregate forecasts of a sample from the general public (N = 802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models and based predictions on prior data.ru
dc.description.sponsorshipThis programme of research was supported by the Basic Research Program at the National Research University Higher School of Economics (M. Fabrykant), John Templeton Foundation grant no. 62260 (I.G. and P.E.T.), Kega 079UK-4/2021 (P.K.), Ministerio de Ciencia e Innovación España grants no. PID2019-111512RB-I00-HMDM and no. HDL-HS-280218 (A.A.), the National Center for Complementary & Integrative Health of the National Institutes of Health under award no. K23AT010879 (S.B.G.), National Science Foundation RAPID grant no. 2026854 (M.E.W.V.), PID2019-111512RB-I00 (M.S.), NPO Systemic Risk Institute grant no. LX22NPO5101 (I.R.), the Slovak Research and Development Agency under contract no. APVV-20-0319 (M.A.), Social Sciences and Humanities Research Council of Canada Insight grant no. 435-2014-0685 (I.G.), Social Sciences and Humanities Research Council of Canada Connection grant no. 611-2020-0190 (I.G.), and Swiss National Science Foundation grant no. PP00P1_170463 (O. Strijbis). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank J. Axt for providing monthly estimates of Project Implicit data and the members of the Forecasting Collaborative who chose to remain anonymous for their contribution to the tournaments.ru
dc.language.isoenru
dc.publisherNature Researchru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Философияru
dc.subjectЭБ БГУ::ОБЩЕСТВЕННЫЕ НАУКИ::Социологияru
dc.titleInsights into the accuracy of social scientists’ forecasts of societal changeru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1038/s41562-022-01517-1-
dc.identifier.scopus85147648888-
Располагается в коллекциях:Статьи факультета философии и социальных наук

Полный текст документа:
Файл Описание РазмерФормат 
554437950.pdf1,77 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.