Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/294897
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGrigorieva, E. V.-
dc.contributor.authorKaschenko, S. A.-
dc.date.accessioned2023-03-09T10:02:26Z-
dc.date.available2023-03-09T10:02:26Z-
dc.date.issued2022-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2022. - Vol. 25. - № 1. - P. 58-66ru
dc.identifier.issn1561-4085-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/294897-
dc.description.abstractWe study the dynamics of the closed chain of a large number of coupled lasers. The coupling between elements is supposed to be unidirectional. The distributed integro-differential model is proposed which takes into account the delay due to the optoelectronic conversion of signals. The bifurcation value of the coupling coefficient is obtained, at which the stationary state of elements in the chain becomes unstable. It is shown that the critical case has infinite dimension if the number of elements in the chain tends to infinity. A two-dimensional complex Ginzburg–Landau equation with convection is obtained as a quasi-normal form. We get the homogeneous periodic solutions of the quasi-normal which correspond to inhomogeneous traveling waves in a distributed model. Such solutions can be interpreted as phase-synchronized regimes in the chain of coupled lasers.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleQuasi-Normal Form for a Ring Model of Pump-Coupledru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.33581/1561-4085-2021-25-1-58-66-
Располагается в коллекциях:2022. Volume 25. Number 1

Полный текст документа:
Файл Описание РазмерФормат 
v25no1p58.pdf398,93 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.