Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/288003
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorCherkas, S.L.-
dc.contributor.authorKalashnikov, V.L.-
dc.date.accessioned2022-10-26T10:55:28Z-
dc.date.available2022-10-26T10:55:28Z-
dc.date.issued2020-
dc.identifier.citationPhys Scr 2020;95(8)ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/288003-
dc.description.abstractA new spherically-symmetric solution for a gravitational field is found in the conformally-unimodular metric. It is shown, that the surface of the black hole horizon in the standard Schwarzschild metric can be squeezed to a point by converting coordinates to the conformally-unimodular metric. In this new metric, there is no black hole horizon, while the naked singularity corresponds to a point massive particle. The reason for the study of this particular gauge (i.e., conformally-unimodular metric) is its relation to the vacuum energy problem. That aims to relate it to other physical phenomena (including black holes), and one could argue that they should be considered in this particular metric. That means the violation of the gauge invariance of the general theory of relativity. As a result, the nonsingular 'eicheons'4 appear as the non-point compact objects with different masses and structures. They are a final product of the stellar collapse, with the masses exceeding the Tolman-Oppenheimer-Volkoff limitru
dc.language.isoenru
dc.publisherIOP Publishing Ltd CODEN PHSTBru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleEicheons instead of Black holesru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.1088/1402-4896/aba3aa-
dc.identifier.scopus85092525992-
Располагается в коллекциях:Статьи НИУ «Институт ядерных проблем»

Полный текст документа:
Файл Описание РазмерФормат 
2004.03947.pdf539,18 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.