Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/287010
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGerasimenko, N. V.-
dc.contributor.authorTrukhachev, F. M.-
dc.contributor.authorGusakov, E. Z.-
dc.contributor.authorSimonchik, L. V.-
dc.contributor.authorTomov, A. V.-
dc.date.accessioned2022-10-06T05:25:21Z-
dc.date.available2022-10-06T05:25:21Z-
dc.date.issued2021-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2021. - Vol. 24, N 3. - P. 272-279ru
dc.identifier.issn1561-4085-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/287010-
dc.description.abstractA numerical one-dimensional model of convective parametric instability of inhomogeneous plasma is developed. By using this model, a numerical solution describing spatial and temporal characteristics of interacting waves is obtained. The results obtained are in a good agreement with known analytical models and substantially generalize them. In particular, an important advantage of the proposed model is the possibility of varying initial conditions, analyzing behavior of the system in the presence of incident wave fluctuations that is important for the future study of the absolute instability mode. The model is also provides possibility to simulate absolute parametric instability with a wide range of controllable parameters, as well as to study interacting wave transients.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/openAccessru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleOne-Dimensional Nonlinear Parametric Instability of Inhomogeneous Plasma: Time Domain Problemru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.33581/1561-4085-2021-24-3-272-279-
Располагается в коллекциях:2021. Volume 24. Number 3

Полный текст документа:
Файл Описание РазмерФормат 
v24no3p272.pdf3,75 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.