Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/280329
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Федотов, А. С. | - |
dc.contributor.author | Романов, О. Г. | - |
dc.contributor.author | Гюнтер, И. Ф. | - |
dc.contributor.author | Титовец, Я. Д. | - |
dc.contributor.author | Зур, И. А. | - |
dc.contributor.author | Степанишин, К. С. | - |
dc.date.accessioned | 2022-05-31T09:15:49Z | - |
dc.date.available | 2022-05-31T09:15:49Z | - |
dc.date.issued | 2021 | - |
dc.identifier.other | Рег. № НИР 20201660 | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/280329 | - |
dc.description.abstract | Объектом исследования являлась динамика температурного поля в различных подсистемах время - проекционная камера (TPC), включая объем термостабилизированной газовой смеси. Цель работы состояла в оценке теплопередачи в объем Ar0.9(CH4)0.1/Ar0.8(CO2)0.2 через спицы фланцевого колеса, фланец TPC, электронику FEC, а также влияния колебаний температуры на термоэкране на теплофизическую динамику системы. Методы исследования включали в себя метод конечных элементов для численного решения уравнений теплопроводности и уравнений Навье-Стокса с уравнением теплопереноса, а также метод анализа безразмерных критериев. Полученные результаты включают пространственные распределения температуры и модули теплового потока в различных подсистемах TPC. Показана необходимость наличия фланцевого радиатора для обеспечения перегрева Ar0.9(CH4)0.1/Ar0.8(CO2)0.2 не выше 0.05 К. При амплитуде флуктуаций на термоэкране ΔT = 1.5 К с учетом теплообмена излучением отклонение от температуры термостабилизации в Ar0.9(CH4)0.1/Ar0.8(CO2)0.2 ¬¬ не превышает 0.1 К для L = 0.05 м и 0.2 К для L = 3 м. При масштабе флуктуаций более 1 м теплообмен излучением оказывает термостабилизирующее влияние. Указанные результаты являются новыми и позволят оценить теплофизические режимы работы TPC. В заключении приведены рекомендации по обеспечению термостабилизации TPC. Результаты и разработанные модели могут найти применение в опытно-конструкторских работах по созданию и модернизации установки MPD. | ru |
dc.language.iso | ru | ru |
dc.publisher | Минск : БГУ | ru |
dc.rights | info:eu-repo/semantics/closedAccess | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.subject | ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Машиностроение | ru |
dc.subject | ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Электроника. Радиотехника | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика | ru |
dc.subject | ЭБ БГУ::ТЕХНИЧЕСКИЕ И ПРИКЛАДНЫЕ НАУКИ. ОТРАСЛИ ЭКОНОМИКИ::Приборостроение | ru |
dc.title | Оценка тепловой нагрузки на рабочую газовую смесь детектора TPC от соседних СУБ-детекторов установки MPD и от электроники считывания TPC : отчет о научно-исследовательской работе (заключительный) / БГУ ; научный руководитель А. С. Федотов | ru |
dc.type | report | ru |
dc.rights.license | CC BY 4.0 | ru |
Располагается в коллекциях: | Отчеты 2021 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
Отчет 20201660 Федотов.docx | 27,94 MB | Microsoft Word XML | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.