Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/280044
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Filipovich, I. A. | |
dc.contributor.author | Kovalev, V. A. | |
dc.date.accessioned | 2022-05-24T13:13:34Z | - |
dc.date.available | 2022-05-24T13:13:34Z | - |
dc.date.issued | 2022 | |
dc.identifier.citation | Компьютерные технологии и анализ данных (CTDA’2022) : материалы III Междунар. науч.-практ. конф., Минск, 21–22 апр. 2022 г. / Белорус. гос. ун-т ; редкол.: В. В. Скакун (отв. ред.) [и др.]. – Минск : РИВШ, 2022. – С. 7-9. | |
dc.identifier.isbn | 978-985-586-561-3 | |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/280044 | - |
dc.description | Секция «Системы машинного и глубокого обучения» | |
dc.description.abstract | In this paper, we experimentally study the robustness of the Convolutional Neural Networks (CNNs) to adversarial attacks in different scenarios of computerized disease diagnosis. In order to disclose practically-relevant solutions, we attempt to compare the final CNN vulnerability scores under the condition of the use of different kinds of adversarial attacks as well as defense methods. On all occasions, we attempt to compare the basic and the most advanced solutions being available in every direction of the inquiry. In order to achieve this, we investigate EfficientNet CNN as one of the most popular convolutional networks. Also, we study the following three types of adversarial attacks: the FGSM Attacks, the Carlini-Wagner attacks as well as the AutoAttacks. After that, we examined three types of adversarial defenses including Adversarial Training, High-Level Representation Guided Denoiser, and the MagNet. The experiments have been performed on medical images typically used for computerized disease diagnosis in oncology (the whole-slide histology) | |
dc.language.iso | en | |
dc.publisher | Минск : РИВШ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика | |
dc.title | Assessing the vulnerability of Ai-based solutions in histopathology of cancer | |
dc.type | conference paper | |
Располагается в коллекциях: | 2022. Компьютерные технологии и анализ данных (CTDA’2022) |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.