Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/266009
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Borzdov, G.N. | - |
dc.date.accessioned | 2021-08-13T11:04:23Z | - |
dc.date.available | 2021-08-13T11:04:23Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Phys Rev A 2016;93(6). | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/266009 | - |
dc.description.abstract | The fundamental solution of the Dirac equation for an electron in an electromagnetic field with harmonic dependence on space-time coordinates is obtained. The field is composed of three standing plane harmonic waves with mutually orthogonal phase planes and the same frequency. Each standing wave consists of two eigenwaves with different complex amplitudes and opposite directions of propagation. The fundamental solution is obtained in the form of the projection operator defining the subspace of solutions to the Dirac equation. It is illustrated by the analysis of the ground state and the spin precession of the Dirac electron in the field of two counterpropagating plane waves with left and right circular polarizations. Interrelations between the fundamental solution and approximate partial solutions is discussed and a criterion for evaluating the accuracy of approximate solutions is suggested. | ru |
dc.language.iso | en | ru |
dc.publisher | American Physical Society | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.title | Ground state and the spin precession of the Dirac electron in counterpropagating plane electromagnetic waves | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.1103/PhysRevA.93.062103 | - |
dc.identifier.scopus | 84973560561 | - |
Располагается в коллекциях: | Кафедра теоретической физики и астрофизики (статьи) |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
1606.02812.pdf | 262,55 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.