Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/260825
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorRasolko, G. A.-
dc.date.accessioned2021-06-04T10:51:14Z-
dc.date.available2021-06-04T10:51:14Z-
dc.date.issued2019-
dc.identifier.citationZ Beloruss Gos Univ , Mat Inform 2019;2019(1):58-68.ru
dc.identifier.urihttps://elib.bsu.by/handle/123456789/260825-
dc.description.abstractIn the paper, computational schemes for solving the Cauchy problem for the singular integro-differential Prandtl equation with a singular integral over a segment of the real axis, understood in the sense of the Cauchy principal value, are constructed and justified. This equation is reduced to equivalent Fredholm equations of the second kind by inversion of the singular integral in three classes of Muskhelishvili functions and applying spectral relations for the singular integral. At the same time, we investigate the conditions for the solvability of integral Fredholm equations of the second kind with a logarithmic kernel of a special form and are approximately solved. The new computational schemes are based on applying the spectral relations for the singular integral to the integral entering into the equivalent equation. Uniform estimates of the errors of approximate solutions are obtained. © 2019, The Belarusian State University. All rights reserved.ru
dc.language.isoenru
dc.publisherThe Belarusian State Universityru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleTo the numerical solution of singular integro-differential prandtl equation by the method of orthogonal polynomialsru
dc.typearticleru
dc.rights.licenseCC BY 4.0ru
dc.identifier.DOI10.33581/2520-6508-2019-1-58-68-
dc.identifier.scopus85091834677-
Располагается в коллекциях:Архив статей механико-математического факультета до 2016 г.

Полный текст документа:
Файл Описание РазмерФормат 
926-Текст статьи-7070-1-10-20191121.pdf380,04 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.