Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/260824
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Volkau, A.U. | - |
dc.contributor.author | Yatskou, M.M. | - |
dc.contributor.author | Grinev, V.V. | - |
dc.date.accessioned | 2021-06-04T10:40:31Z | - |
dc.date.available | 2021-06-04T10:40:31Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Z Beloruss Gos Univ , Mat Inform 2019;2019(1):77-89. | ru |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/260824 | - |
dc.description.abstract | Dimensionality reduction of the human gene exon feature space is considered with the aim of gene identification. To evaluate the performance of various feature selection algorithms, computational experiments were carried out using the examples of exons of 14 known human genes. It is proven that exons are clearly separable regarding gene affiliation. Feature selection algorithms are sensitive to noise features and allow to estimate their number. Reducing the number of features improves CPU-time, memory usage as well as reduces the complexity of a model and makes it easier to interpret. Our findings indicate that utilizing of features of flanking intronic sequences leads to better prediction models in comparison with utilizing of exon features. The results of the research provide new opportunities for study of human gene data using machine learning algorithms. | ru |
dc.language.iso | en | ru |
dc.publisher | The Belarusian State University | ru |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Биология | ru |
dc.title | Selecting informative features of human gene exons | ru |
dc.type | article | ru |
dc.rights.license | CC BY 4.0 | ru |
dc.identifier.DOI | 10.33581/2520-6508-2019-1-77-89 | - |
dc.identifier.scopus | 85091850768 | - |
Располагается в коллекциях: | Статьи биологического факультета |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
1045-Текст статьи-8813-1-10-20191221.pdf | 462,68 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.