Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/254342
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Kashchenko, A. | - |
dc.date.accessioned | 2021-01-21T08:13:40Z | - |
dc.date.available | 2021-01-21T08:13:40Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Nonlinear Phenomena in Complex Systems. - 2019. - Vol. 22, N 2. - P. 190-195 | ru |
dc.identifier.issn | 1561-4085 | - |
dc.identifier.uri | https://elib.bsu.by/handle/123456789/254342 | - |
dc.description.abstract | In this paper we study nonlocal dynamics of a system of two coupled delay differential equations with a sign-changing compactly supported nonlinearity. The main assumptions in the problem are that nonlinearity is multiplied by a large parameter and a coupling coefficient is sufficiently small. Using asymptotic methods we investigate the existence of relaxation periodic solutions of a given system. We choose a special set in the phase space of the initial system. Then we calculate asymptotics of all solutions of the considered system with initial conditions from a chosen set. By this asymptotics we build a special mapping. Cycles of this mapping correspond to periodic asymptotic (by the discrepancy) solutions of the initial system. Constructed mapping has a two-parameter families of non-rough cycles. Thus, the initial system has two-parameter families of non-rough inhomogeneous relaxation periodic asymptotic (by the discrepancy) solutions. | ru |
dc.language.iso | en | ru |
dc.publisher | Minsk : Education and Upbringing | ru |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.title | Non-rough Relaxation Solutions of a System with Delay and Sign-Changing Nonlinearity | ru |
dc.type | article | en |
dc.rights.license | CC BY 4.0 | ru |
Располагается в коллекциях: | 2019. Volume 22. Number 2 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
v22no2p190.pdf | 345,68 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.