Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/254342
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKashchenko, A.-
dc.date.accessioned2021-01-21T08:13:40Z-
dc.date.available2021-01-21T08:13:40Z-
dc.date.issued2019-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2019. - Vol. 22, N 2. - P. 190-195ru
dc.identifier.issn1561-4085-
dc.identifier.urihttps://elib.bsu.by/handle/123456789/254342-
dc.description.abstractIn this paper we study nonlocal dynamics of a system of two coupled delay differential equations with a sign-changing compactly supported nonlinearity. The main assumptions in the problem are that nonlinearity is multiplied by a large parameter and a coupling coefficient is sufficiently small. Using asymptotic methods we investigate the existence of relaxation periodic solutions of a given system. We choose a special set in the phase space of the initial system. Then we calculate asymptotics of all solutions of the considered system with initial conditions from a chosen set. By this asymptotics we build a special mapping. Cycles of this mapping correspond to periodic asymptotic (by the discrepancy) solutions of the initial system. Constructed mapping has a two-parameter families of non-rough cycles. Thus, the initial system has two-parameter families of non-rough inhomogeneous relaxation periodic asymptotic (by the discrepancy) solutions.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleNon-rough Relaxation Solutions of a System with Delay and Sign-Changing Nonlinearityru
dc.typearticleen
dc.rights.licenseCC BY 4.0ru
Располагается в коллекциях:2019. Volume 22. Number 2

Полный текст документа:
Файл Описание РазмерФормат 
v22no2p190.pdf345,68 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.