Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/242180
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Manukyan, V. A. | - |
dc.contributor.author | Ishkhanyan, T. A. | - |
dc.contributor.author | Ishkhanyan, A. M. | - |
dc.date.accessioned | 2020-05-05T08:34:16Z | - |
dc.date.available | 2020-05-05T08:34:16Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Nonlinear Phenomena in Complex Systems. - 2019. - Vol. 22, N 1. - P. 84-92 | ru |
dc.identifier.issn | 1561-4085 | - |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/242180 | - |
dc.description.abstract | The solution of the one-dimensional Schr¨odinger equation for a potential involving an attractive ∼ x 2/3 and a repulsive centrifugal-barrier ∼ x −2 terms is presented in terms of the non-integer-order Hermite functions. The potential belongs to one of the five biconfluent Heun families. This is a conditionally integrable potential in that the strength of the centrifugal-barrier term is fixed to 91~2/(72m). The general solution of the problem is composed using fundamental solutions each of which presents an irreducible linear combination of two Hermite functions of a scaled and shifted argument. The potential presents an infinitely extended confining well defined on the positive semi-axis and sustains infinitely many bound states. | ru |
dc.language.iso | en | ru |
dc.publisher | Minsk : Education and Upbringing | ru |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.title | A Schr¨odinger Potential Involving x 2/3 and Centrifugal-Barrier terms Conditionally Integrable in Terms of the Confluent Hypergeometric Functions | ru |
dc.type | article | en |
dc.rights.license | CC BY 4.0 | ru |
Располагается в коллекциях: | 2019. Volume 22. Number 1 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
v22no1p84.pdf | 5,32 MB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.