Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/242173
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorXuan, Trung Hoang-
dc.contributor.authorVan, Tuyet Dao-
dc.contributor.authorHoang, Huy Ngo-
dc.contributor.authorAblameyko, Sergey-
dc.contributor.authorQuoc, Cuong Nguyen-
dc.contributor.authorVan, Quy Hoang-
dc.date.accessioned2020-05-05T07:13:44Z-
dc.date.available2020-05-05T07:13:44Z-
dc.date.issued2019-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2019. - Vol. 22, N 1. - P. 1-17ru
dc.identifier.issn1561-4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/242173-
dc.description.abstractIn Content-Based Image Retrieval (CBIR) images are represented by multi low-level features that describe image color, texture, and shape of objects. The Efficient Manifold Ranking (EMR) algorithm is a semi-supervised learning algorithm on the low-level image features that has been used efficiently in CBIR. The combination of different image features to build the weighted EMR -graph usually uses normalized feature data for balancing the value of each feature. In this paper, we propose a novel normalization method for vector number data such as the low level image features where vector components are not consistent with the characteristics of the Gaussian distribution and its application for calculating the adjacent matrix of the weighted EMR-graph. Experiments show the effectiveness of the proposed algorithm for the EMR, the CBIR quality is really improved. Besides the testing normalization method for visual images, we also investigated the possibility to use the proposed method for medical image datasets.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleA Novel Non-Gaussian Feature Normalization Method and its Application in Content Based Image Retrievalru
dc.typearticleen
dc.rights.licenseCC BY 4.0ru
Располагается в коллекциях:2019. Volume 22. Number 1

Полный текст документа:
Файл Описание РазмерФормат 
v22no1p1.pdf1,88 MBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.