Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/238003
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSidorov, A. V.-
dc.contributor.authorLashkevich, V. I.-
dc.contributor.authorSolovtsova, O. P.-
dc.date.accessioned2020-01-22T07:34:52Z-
dc.date.available2020-01-22T07:34:52Z-
dc.date.issued2018-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2018. - Vol. 21, № 4. - P. 343-349ru
dc.identifier.issn1561-4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/238003-
dc.description.abstractWe apply the Mellin transformation method to the recovery form of the fragmentation function using two efficient approximations for the contour of the stationary phase. The first contour is of parabolic form and runs from the saddle point. A new approach is proposed for the contour of the stationary phase of the Mellin–Barnes integrals in the case of their finite asymptotic behavior. The fragmentation functions have a more complicated parametrization in comparison with the structure functions and parton distributions, and this causes the peculiarities in applying the second method for constructing an effective contour. We compare the efficiency of application of these contours for the inverse Mellin transform of the fragmentation functions. It is shown that both methods make it possible to achieve high accuracy in the recovery of the fragmentation function by using a small number of terms in the quadrature formula.ru
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleThe Inverse Mellin Transform Method for the Fragmentation Functions Based on the Efficient Approximations for the Contour of the Stationary Phaseru
dc.typearticleen
dc.rights.licenseCC BY 4.0ru
Располагается в коллекциях:2018. Volume 21. Number 4

Полный текст документа:
Файл Описание РазмерФормат 
v21no4p343.pdf127,51 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.