Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/237999
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Krylova, N. G. | - |
dc.contributor.author | Ovsiyuk, E. M. | - |
dc.contributor.author | Balan, V. | - |
dc.contributor.author | Red’kov, V. M. | - |
dc.date.accessioned | 2020-01-22T07:25:42Z | - |
dc.date.available | 2020-01-22T07:25:42Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Nonlinear Phenomena in Complex Systems. - 2018. - Vol. 21, № 4. - P. 309-325 | ru |
dc.identifier.issn | 1561-4085 | - |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/237999 | - |
dc.description.abstract | The quantum mechanical problem for a relativistic spin 1 particle is studied. With the use of the space reflection operator, the radial system of ten equations is splitted into independent subsystems, consisting of 4 and 6 equations, respectively. The last one reduces to a system of 4 linked first order differential equations for the complex radial functions fi(r) i = 1 4. We investigate this system by using the tools of the Jacobi stability theory, namely, the Kosambi–Cartan–Chen (KCC) theory. It has been shown that the second KCC-invariant is a function of the radial coordinate r, and it does not depend on xi and yi = dxidr , i = 1 8.Due to this, the remaining 3 KCC-invariants identically vanish. In accordance with the general theory, a pencil of geodesic curves from the point r0 converges (or diverges) if the real parts of all eigenvalues of the 2-nd KCC-invariant P ij are negative (or positive). We determine the expressions for the matrix P ij(r) for r 0 and for r , and examine the asymptotic behavior of the eigenvalue problem P = . The established behavior of eigenvalues correlates with the existence of two solutions which may be associated with the bound states of a particle in a Coulomb field. We further describe a method which permits to examine projections of the whole set of solutions onto different 2-planes of the 4-space. In each case, such a projection consists of two branches, which are characterized by different 2-nd order differential equations. | ru |
dc.language.iso | en | ru |
dc.publisher | Minsk : Education and Upbringing | ru |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.title | Geometrization for a Quantum-Mechanical Problem of a Vector Particle in an External Coulomb Field | ru |
dc.type | article | en |
dc.rights.license | CC BY 4.0 | ru |
Располагается в коллекциях: | 2018. Volume 21. Number 4 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
v21no4p309.pdf | 254,94 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.