Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/233389
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGammerman, A.
dc.date.accessioned2019-10-29T12:06:19Z-
dc.date.available2019-10-29T12:06:19Z-
dc.date.issued2019
dc.identifier.citationComputer Data Analysis and Modeling: Stochastics and Data Science : Proc. of the Twelfth Intern. Conf., Minsk, Sept. 18-22, 2019. – Minsk : BSU, 2019. – P. 33-36.
dc.identifier.isbn978-985-566-811-5
dc.identifier.urihttp://elib.bsu.by/handle/123456789/233389-
dc.description.abstractThe talk reviews a modern machine learning technique called Conformal Predictors. The approach has been motivated by algorithmic notion of randomness and allows us to make reliable predictions with valid measures of confidence for individual examples. The developed technique guarantees that the overall accuracy can be controlled by a required confidence level. Unlike many conventional techniques the approach does not make any additional assumption about the data beyond the i.i.d. assumption: the examples are independent and identically distributed. The way to test this assumption is described. The talk also outlines some generalisations of Conformal Predictors and their applications to many different fields including medicine, cheminformatics, information security, environment, plasma physics, home security and others.
dc.language.isoen
dc.publisherMinsk : BSU
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
dc.titleConformal predictors for reliable pattern recognition
dc.typeconference paper
Располагается в коллекциях:2019. Computer Data Analysis and Modeling : Stochastics and Data Science

Полный текст документа:
Файл Описание РазмерФормат 
33-36.pdf274,45 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.