Logo BSU

Please use this identifier to cite or link to this item: https://elib.bsu.by/handle/123456789/214071
Title: Методы машинного и глубокого обучения. №УД-6252/уч.
Authors: Хейдоров, Игорь Эдуардович
Keywords: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Кибернетика
Issue Date: 20-Jul-2018
Abstract: Программа дисциплины «Методы машинного и глубокого обучения» разработана для студентов II ступени высшего образования (магистратура) специальностей 1-31 80 07 Радиофизика, 1-31 80 08 Физическая электроника, 1-98 80 03 Аппаратное и программно-техническое обеспечение информационной безопасности в соответствии с требованиями образовательных стандартов высшего образования данных специальностей. Данная учебная дисциплина призвана ознакомить магистрантов с некоторыми элементами современного анализа данных. Они получают представление об основных классах задач машинного обучения и более подробно знакомятся с алгоритмами для решения задач классификации и кластеризации. В число изучаемых алгоритмов классификации входят алгоритмы ближайшего соседа, SVM, байесовские методы, деревья решений, списки правил. Для решения задач кластеризации рассматриваются как алгоритмы для фиксированного числа кластеров (K-Means, EM), так и способы автоматического определения числа кластеров (агломеративная и дивизивная кластеризации). Вторая часть дисциплины посвящена изучению вопроса использования сетей глубокого обучения для решения современных задач классификации и распознавания сигналов и изображений, анализа текстов.
URI: http://elib.bsu.by/handle/123456789/214071
Appears in Collections:Кафедра радиофизики и цифровых медиа технологий (архив)

Files in This Item:
File Description SizeFormat 
П_М_Методы машинного и глубокого обучения 2018.pdf374,96 kBAdobe PDFView/Open
Show full item record Google Scholar



PlumX

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.