Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/185383
Заглавие документа: | Приближенное решение контактной задачи для жесткого диска и плоскости с круговым вырезом без использования сингулярных уравнений |
Другое заглавие: | An approximate solution of the contact problem for the hard disk and plane with a circular hole without application of singular equations / A. S. Kravchuk, A. I. Kravchuk |
Авторы: | Кравчук, А. С. Кравчук, А. И. |
Тема: | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика |
Дата публикации: | 2017 |
Издатель: | Минск : БГУ |
Библиографическое описание источника: | Журнал Белорусского государственного университета. Математика. Информатика = Journal of the Belarusian State University. Mathematics and Informatics . - 2017. - № 2. - С. 59-64 |
Аннотация: | С помощью метода аналитических функций приближенно решена контактная задача теории упругости для жесткого недеформируемого диска и упругой плоскости с круглым вырезом без использования сингулярных уравнений. Сделано предположение, что в области контакта распределение напряжений представлено в виде ряда Фурье. Коэффициенты разложений в ряд аналитических функций выражаются через коэффициенты ряда Фурье контактных напряжений. В конце решения ряд Фурье и, соответственно, ряды аналитических функций усекаются до минимально возможного количества членов. В качестве краевого условия по перемещениям в области контакта используется известное выражение Левиной – Решетова. Впервые получены квадратурные формулы, позволяющие инженерам выполнять расчеты сопряжений типа вал – втулка с учетом простого теоретически обоснованного распределения напряжений в области контакта. Констатируется, что предлагаемая методика позволяет разработать прикладную теорию износостойкости подшипников скольжения с учетом микрогеометрических параметров их поверхностей. = For the first time the contact problem of elasticity theory for the rigid (not deformable) disk and elastic plane with a hole was approximately solved using the method of analytic functions without the application of singular equations. It is assumed that the stress distribution in the area of contact is represented by the Fourier series. The coefficients of the series expansion of analytic functions are expressed in terms of the coefficients of the Fourier series of contact stress. At the end of the solution the Fourier series and, respectively, series of analytic functions is truncated to the lowest possible number of members. The familiar Lewin-Reshetova expression for the contact displacements was used as a boundary condition for this problem. The quadrature formula of solution allowing engineers to perform calculations of interfaces such as shaft – bush was obtained. The proposed method allows authors to develop the applied theory of wear resistance of sliding bearings taking into consideration microgeometrical parameters of their surfaces. |
URI документа: | http://elib.bsu.by/handle/123456789/185383 |
ISSN: | 1561-834X |
Лицензия: | info:eu-repo/semantics/openAccess |
Располагается в коллекциях: | 2017, №2 |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.