Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/174120
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorOvsiyuk, E. M.-
dc.contributor.authorVeko, O. V.-
dc.contributor.authorRed’kov, V. M.-
dc.date.accessioned2017-06-14T15:29:55Z-
dc.date.available2017-06-14T15:29:55Z-
dc.date.issued2013-
dc.identifier.citationNonlinear Phenomena in Complex Systems. - 2013. - Vol. 16, N 4. - P. 331-344ru
dc.identifier.issn1561 - 4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/174120-
dc.description.abstractLobachevsky geometry simulates a medium with special constitutive relations, Di = ϵ0ϵ ikEk ,Bi = μ0μikHk where two matrices coincide: ϵik(x) = μik(x). The situation is specified in quasi-cartesian coordinates (x, y, z). Exact solutions of the Maxwell equations in complex 3-vector E+iB form, extended to curved space models within the tetrad formalism, have been found in Lobachevsky space. The problem reduces to a second order differential equation which can be associated with an 1-dimensional Schröodinger problem for a particle in the external potential field U(z) = U0e2z. In quantum mechanics, curved geometry acts as an effective potential barrier with reflection coefficient R = 1; in electrodynamic context results similar to quantum-mechanical ones arise: the Lobachevsky geometry simulates a medium that effectively acts as an ideal mirror. Penetration of the electromagnetic field into the effective medium, depends on the parameters of an electromagnetic wave, frequency ω,k21 + k22, and the curvature radius ρ.ru
dc.languageen
dc.language.isoenru
dc.publisherMinsk : Education and Upbringingru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физикаru
dc.titleOn Simulating a Medium with Special Reflecting Properties by Lobachevsky Geometryru
dc.typearticleen
Располагается в коллекциях:2013. Volume 16. Number 4

Полный текст документа:
Файл Описание РазмерФормат 
v16no4p331.pdf190,6 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.