Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/174120
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Ovsiyuk, E. M. | - |
dc.contributor.author | Veko, O. V. | - |
dc.contributor.author | Red’kov, V. M. | - |
dc.date.accessioned | 2017-06-14T15:29:55Z | - |
dc.date.available | 2017-06-14T15:29:55Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | Nonlinear Phenomena in Complex Systems. - 2013. - Vol. 16, N 4. - P. 331-344 | ru |
dc.identifier.issn | 1561 - 4085 | - |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/174120 | - |
dc.description.abstract | Lobachevsky geometry simulates a medium with special constitutive relations, Di = ϵ0ϵ ikEk ,Bi = μ0μikHk where two matrices coincide: ϵik(x) = μik(x). The situation is specified in quasi-cartesian coordinates (x, y, z). Exact solutions of the Maxwell equations in complex 3-vector E+iB form, extended to curved space models within the tetrad formalism, have been found in Lobachevsky space. The problem reduces to a second order differential equation which can be associated with an 1-dimensional Schröodinger problem for a particle in the external potential field U(z) = U0e2z. In quantum mechanics, curved geometry acts as an effective potential barrier with reflection coefficient R = 1; in electrodynamic context results similar to quantum-mechanical ones arise: the Lobachevsky geometry simulates a medium that effectively acts as an ideal mirror. Penetration of the electromagnetic field into the effective medium, depends on the parameters of an electromagnetic wave, frequency ω,k21 + k22, and the curvature radius ρ. | ru |
dc.language | en | |
dc.language.iso | en | ru |
dc.publisher | Minsk : Education and Upbringing | ru |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.title | On Simulating a Medium with Special Reflecting Properties by Lobachevsky Geometry | ru |
dc.type | article | en |
Располагается в коллекциях: | 2013. Volume 16. Number 4 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
v16no4p331.pdf | 190,6 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.