Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/14552
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Baryshevsky, V. G. | - |
dc.contributor.author | Feranchuk, Ilya D. | - |
dc.contributor.author | Kats, P. B. | - |
dc.date.accessioned | 2012-08-29T13:17:17Z | - |
dc.date.available | 2012-08-29T13:17:17Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | PHYSICAL REVIEW A 70, 052701 (2004) | ru |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/14552 | - |
dc.description.abstract | The exact solution of the Schrödinger equation for the Coulomb potential is used within the scope of both stationary and time-dependent scattering theories in order to find the parameters which determine the regularization of the Rutherford cross section when the scattering angle tends to zero but the distance r from the center remains finite. The angular distribution of the particles scattered in the Coulomb field is studied on rather a large but finite distance r from the center. It is shown that the standard asymptotic representation of the wave functions is inapplicable in the case when small scattering angles are considered. The unitary property of the scattering matrix is analyzed and the “optical” theorem for this case is discussed. The total and transport cross sections for scattering the particle by the Coulomb center proved to be finite values and are calculated in the analytical form. It is shown that the effects under consideration can be important for the observed characteristics of the transport processes in semiconductors which are determined by the electron and hole scattering by the field of charged impurity centers. | ru |
dc.language.iso | en | ru |
dc.publisher | The American Physical Society | ru |
dc.title | Regularization of the Coulomb scattering problem | ru |
dc.type | article | ru |
Располагается в коллекциях: | Кафедра теоретической физики и астрофизики (статьи) |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
146573.pdf | 310,64 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.