Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/13680
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSaetchnikov, Vladimir A.-
dc.contributor.authorTcherniavskaia, Elina A.-
dc.contributor.authorSaetchnikov, Anton V.-
dc.contributor.authorSchweiger, Gustav-
dc.contributor.authorOstendorf, Andreas-
dc.date2011-
dc.date.accessioned2012-07-11T08:04:50Z-
dc.date.available2012-07-11T08:04:50Z-
dc.date.issued2011-
dc.identifier.citationNonliner phenomena in complex systems. - 2011. - Vol.14, no.3. - P. 253-263.ru
dc.identifier.issn1561-4085-
dc.identifier.urihttp://elib.bsu.by/handle/123456789/13680-
dc.description.abstractA novel technique for the label-free analysis of micro and nanoparticles including biomolecules using optical micro cavity resonance of whispering-gallery-type modes is being developed. Various schemes of the method using both standard and specially produced microspheres have been investigated to make further development for microbial application. It was demonstrated that optical resonance under optimal geometry could be detected under the laser power of less than 1 microwatt. The sensitivity of developed schemes has been tested by monitoring the spectral shift of the whispering gallery modes. Water solutions of ethanol, ascorbic acid, blood phantoms including albumin and HCl, glucose, biotin, biomarker like C reactive protein as well as bacteria and virus phantoms (gels of silica micro and nanoparticles) have been used. Structure of resonance spectra of the solutions was a specific subject of investigation. Probabilistic neural network classifier for biological agents and micro/nano particles classification has been developed. Several parameters of resonance spectra such as spectral shift, broadening, diffuseness and others have been used as input parameters to develop a network classifier for micro and nanoparticles and biological agents in solution. Classification probability of approximately 98 % for probes under investigation have been achieved. Developed approach have been demonstrated to be a promising technology platform for sensitive, lab-on-chip type sensor which can be used for development of diagnostic tools for different biological molecules, e.g. proteins, oligonucleotides, oligosaccharides, lipids, small molecules, viral particles, cells as well as in different experimental contexts e.g. proteomics, genomics, drug discovery, and membrane studies.ru
dc.language.isoenru
dc.publisherАдукацыя и выхаваннеru
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.titleNeural Network Analysis of the Resonance Whispering Gallery Mode Characteristics of Biological Agentsru
dc.typearticleen
Располагается в коллекциях:2011. Volume 14. Number 3

Полный текст документа:
Файл Описание РазмерФормат 
v14no3p253.pdf305,81 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.