Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ:
https://elib.bsu.by/handle/123456789/133717
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Tomilchik, L. M. | - |
dc.date.accessioned | 2016-01-05T08:24:04Z | - |
dc.date.available | 2016-01-05T08:24:04Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Nonlinear Phenomena in Complex Systems. - 2014. - Vol. 17, N 4. - P. 451-454 | ru |
dc.identifier.issn | 1561 - 4085 | - |
dc.identifier.uri | http://elib.bsu.by/handle/123456789/133717 | - |
dc.description.abstract | It is supposed that the geometry of the General Relativity flat limit can be described by semi-direct product of the Special Conformal Transformations and Lorentz groups, locally isomorphic to Poincare group. The possible observable manifestations of such a supposition are considered. It is shown that the detected Universe accelerated expansion can be treated as a purely kinematic e˙ect of the proposed space–time geometry. The radar procedure of the distance determination in conformal space–time is described. It is shown that the space intervals conformal contraction gave rise to anomalous violet frequency shift during the monochromatic signal propagation over the closed path. Its relative value equals the Hubble constant multiplied by duration of propagation. The predicted phenomenon is the local manifestation of the cosmologic expansion and, in principle, is accessible to experimental detection. | ru |
dc.language | eng | - |
dc.language.iso | en | ru |
dc.publisher | Minsk : Education and Upbringing | ru |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.subject | ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Физика | ru |
dc.title | Space–Time Non-Invariance of the Conformal Geometry and Its Possible Observable Manifestations | ru |
dc.type | article | en |
Располагается в коллекциях: | 2014. Volume 17. Number 4 |
Полный текст документа:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
v17no4p451.pdf | 173,62 kB | Adobe PDF | Открыть |
Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.